## Class \#26 - Wednesday, December 4

## Section 5.5: Binomial Experiments, Random Variables \& Distributions

Definition: A binomial experiment is a probability experiment such that:

- The experiment consists of some fixed number $n$ of "trials"
- Each trial has exactly two outcomes (often called success $S$ and failure $F$ )
- The probability of success is the same for each trial
- The trials are independent, i.e., the outcome of any trial does not affect any other

Let the random variable $X=$ the number of successful trials (out of $n$ ), which is called a binomial random variable. Note that the possible values of $X$ are $0 \leq i \leq n$.

## Notation:

- $n=$ number of trials
- $p=$ probability of success in a single trial
- $q=$ probability of failure in a single trial (note that $q=1-p$ )
- $X=$ the number of successes in the $n$ trials

Example 1: Binomial experiments arise naturally in a number of situations. Understand why each of these is a binomial experiment, and write down the values of $n, p$ and $q$ :
(i) Flip a coin 3 times. Let $X=$ the number of times heads is observed.
(ii) An $80 \%$ free throw shooter takes 5 free throws in a game. Let $X=$ the number of successful free throws.
(iii) A bag contains 9 red marbles and 1 blue marble. Fifteen marbles are selected from the bag with replacement. Let $X=$ the number of times a red marble is selected.
(iv) A multiple choice exam has 50 questions. Each question has 5 choices. Suppose you guess randomly on each question. Let $X=$ the number of successful guesses.
(v) Each time a person with a certain infectious disease comes into contact with someone, there is a $5 \%$ chance they will pass on the infection. Suppose the person comes in contact with 100 people. Let $X=$ the number of people infected.

We are interested in calculating the distribution of a binomial random variable $X$, in terms of the parameters $n, p$ and $q$. Such a probability distribution is called a binomial distribution.

Binomial Distribution Formula: In a binomial experiment with parameters $n, p$ and $q$, the probability of exactly $i$ successes in $n$ trials is:

$$
P(X=i)=\binom{n}{i} p^{i} q^{n-i}
$$

## Explanation of the binomial probability formula:

- The sample space of a binomial experiment is all $2^{n}$ possible sequences of length $n$ of $S$ 's and $F$ 's
- Ex: If we flip a coin 3 times, there are $2^{3}=8$ sequences of $H$ 's and $T$ 's
- Fix $0 \leq i \leq n$. Each different combination of $i$ trials out of the $n$ total trials corresponds to a sequence with exactly $i S$ 's. Thus, for each possible value of $X$, there are $\binom{n}{i}$ sequences with exactly $i S$ 's:
- Ex: There are $\binom{3}{2}=\frac{3 * 2}{2 * 1}=3$ such sequences with exactly 2 heads (namely: HHT, HTH, THH)
- The probability of any one such sequence with exactly $i S$ 's (and hence exactly $n-i$ $F$ 's) is $p^{i} q^{n-i}$ (by the Multiplication Rule)
- Ex: If the probability of heads is $p$ and the proability of tails is $q=1-p$, then the probability of $H H T$ is $p * p * q=p^{2} q$. Similarly, the probability of $H T H$ is $p * q * p=p^{2} q$ and the probability of $T H H$ is $q * p * p=p^{2} q$.
- Adding up $\binom{n}{i}$ such probabilities results in the product $\binom{n}{i} p^{i} q^{n-i}$
- Ex: The probability of getting exactly 2 heads is

$$
P(\{H H T, H T H, T H H\})=P(H H T)+P(H T H)+P(T H H)=p^{2} q+p^{2} q+p^{2} q=3 p^{2} q
$$

Example 2: Calculate the following probabilities using the binomial distribution formula:
(i) Take the situation of an $80 \%$ free throw shooter who takes 5 free throws in a game. What is the probability that the player will make exactly 3 of the 5 free throws?
(ii) Take the situation of a multiple choice exam with 50 questions, where each question has 5 choices. What is the probability that you correctly guess exactly 40 out of 50 correctly.

Forumlas: The expected value, variance and standard deviation of a binomial random variable $X$ have simple formulas:

- expected value: $\mu=E[X]=n p$
- variance: $\operatorname{Var}(X)=n p q$
- standard deviation: $\mathrm{SD}(X)=\sqrt{n p q}$

