Class \#23 - Monday, Nov 25

Section 5.3 \& 5.4: Expected Value and Variance of Probability Distributions

Definition: The expected value of a discrete random variable X which has possible values $x_{1}, x_{2}, \ldots, x_{n}$ is defined as

$$
E[X]=\sum_{i=1}^{n} x_{i} * P\left(X=x_{i}\right)
$$

The expected value is sometimes called the expectation of X, or simply the mean of X, and is usually denoted by μ (the Greek letter "mu").
If X is a random variable with expected value μ, then the variance and standard deviation of X are defined as follows:

$$
\begin{aligned}
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] & =\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} * P\left(X=x_{i}\right) \\
\mathrm{SD}(X) & =\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Useful formula for the variance (via some algebra): $\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}$

Example 1: On the previous handout, we discussed this hypothetical probability distribution for $X=$ the number of days that it will rain over the next 3 days:

Days of rain, x_{i}	Probability $P\left(X=x_{i}\right)$
0	0.21
1	0.44
2	0.29
3	0.06

Find the expected value, variance, and standard deviation of X.

Example 2: Also on the previous handout, we computed the probability distribution for $X=$ the number of heads observed from flipping a coin three times:

Number of heads, x_{i}	Probability $P\left(X=x_{i}\right)$
0	$1 / 8=0.125$
1	$3 / 8=0.375$
2	$3 / 8=0.375$
3	$1 / 8=0.125$

Find the expected value, variance, and standard deviation of x.

