Class \#7 \& \#8 - Wed 18 Sept \& Mon 23 Sept Paired Data: Linear Regression

Readings: Ross, Sections 12.1-12.3; see also https://www.khanacademy.org/math/ probability/regression

Intro: Last time we discussed two ways of looking at the relationship between two variables given a paired data set $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$:

- a scatterplot to visualize the data set
- the correlation coefficient r which quantifies to what extent the variables are positively or negatively correlated:

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

For example, we generated the scatterplot for the height-weight data from the last handout, which seemed to indicate a strong positive correlation between height and weight. We also calculated the correlation coefficient to be $r \approx 0.84$, which verifies that there is a strong positive correlation in the data.
We can also manually add a line which seems to fit the data-but we want a systematic way of doing so. In fact, the spreadsheet has a built-in option to add a "linear trendline" to any scatterplot.

Spreadsheet Exercise: Find the option to add a linear trendline to your seatterplot. 200 There is also an option to show the equation of the line on the graph.
How is this "trendline" defined? This process is called linear regression. We "regress" the y-data (usually called the dependent or response variable) against the x-data (the independent or input variable) to find a linear relationship for y in terms of x, or what is called a linear model for y in terms of x :

$$
y=\alpha+\beta x
$$

This is the slope-intercept equation of a line, where α is the y-intercept of the line and β is the slope; α

|FIGURE 12.2
The errors. and β are called the linear regression parameters.
Now the question is: how do we find α and β, i.e., what are the best choices of y-intercept and slope so that line that best fits the data?

We will choose α and β so that the sum of squares of the "errors" (or "residuals") is minimized, where the error ϵ_{i} is the difference between the data point $\left\{x_{i}, y_{i}\right\}$ and the point on the line. Hence linear regression is also called "linear least squares" or "ordinary least squares" (OLS).
"Least-squares" linear regression: The error for an observed data point $\left(x_{i}, y_{i}\right)$ with a linear model $y=\alpha+\beta x$ is

$$
\epsilon_{i}=y_{i}-\left(\alpha+\beta x_{i}\right)
$$

The least-squares linear regression model is given by choosing α and β such that the sum of squared errors (often abbreviated "SSE")

$$
\mathrm{SSE}=\sum_{i=1}^{n} \epsilon_{i}^{2}
$$

is as small as possible. It can be shown (using calculus) that such α and β are given by:

$$
\beta=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \alpha=\bar{y}-\beta \bar{x}
$$

Spreadsheet exercise: Calculate the linear regression parameters for the height-weight data from the previous handout by implementing the formulas above. First calculate β. Note that the numerator in the formula for β,

$$
\Sigma_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

is the same as the numerator in the correlation coefficient r, so you should have already calculated that in your spreadsheet. Once you've calculated β, it is straightforward to calculate α.

Spreadsheet functions =slope, =intercept \& =linest: Check your calculations above by directly calculating the linear regression parameters using the built-in functions
=slope(data_y, data_x) \& =intercept(data_y, data_x)
which output the two linear regression parameters. Alternatively, you can use the "linear estimator" function which which will output both regression parameters:
=linest(data_y, data_x)
(Like =frequency, =linest is an "array function" in Excel, and so you will need to first select the output cells and hit "Control+Shift+Enter" to enter the formula. Another way to do linear regression in Excel is to use "Tools \rightarrow Data Analysis \rightarrow Regression".)

