Class \#3 - Monday February 8

Measures of Central Location (Mean \& Median); Percentiles and Quartiles

Textbook readings:

- Ross, Sec 3.2: Sample Means \& Sec 3.3: Sample Medians
- Phillips, Chapter 3

Key Concepts/Definitions \& Spreadsheet Functions

- Sigma (Σ) notation for sums: for a sample of n data points whose values are $x_{1}, x_{2}, \ldots x_{n}$

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\ldots x_{n}
$$

- spreadsheet function: =sum (data)
- sample mean ("x-bar"):

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

- spreadsheet function: =average (data)
- sample median: value m such that half of the data points in the sample are smaller than m (and hence half are larger than m)
- spreadsheet function: =median (data)
- percentiles (Ross, Sec 3.3.1, pp90-92) the p-th percentile is the value such that $p \%$ of the data points are smaller than that value
- Note that the median is the 50th percentile
- Percentiles are typically used when the number of data points is much larger than 100; often used in health care (e.g., height and weight) and education (e.g., SAT scores)
- spreadsheet function: =percentile(data, 0.95) would output the 95th percentile
- quartiles (Ross, Sec 3.3.1, p93): the quartiles break up the data set into quarters
- the 1st quartile (Q1) is the 25 th percentile
- the 2nd quartile (Q2) is the 50th percentile, i.e., is the median
- the 3rd quartile (Q3) is the 75th percentile
- Note that the percentiles and quartiles are values in the range of the data set (i.e., are between the max and min)
- The min, 1st quartile, 2nd quartile/median, 3rd quartile, and max are used to create a graph called a boxplot (see Ross pp104-105 \& WebWork "HW2-Graphs" \#10, 11, 13)

