Trigonometry - Useful Formulas and Identities

Definition 17.2. Let x be an angle. Consider the terminal side of the angle x, and assume that the point $P(a, b)$ is a point on the terminal side of x. If r is the distance from P to the origin $(0,0)$, then we define the sine, cosine, tangent, cosecant, secant, and cotangent as follows:

$$
\begin{aligned}
& a^{2}+b^{2}=r^{2} \\
\Longrightarrow & r=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
\sin (x)=\frac{b}{r} & \csc (x)=\frac{r}{b} \\
\cos (x)=\frac{a}{r} & \sec (x)=\frac{r}{a} \\
\tan (x)=\frac{b}{a} & \cot (x)=\frac{a}{b}
\end{array}
$$

There are some immediate consequences from the above definition.

$$
\begin{array}{ll}
\hline \csc (x)=\frac{1}{\sin (x)} & \sec (x)=\frac{1}{\cos (x)} \\
\hline \tan (x)=\frac{\sin (x)}{\cos (x)} & \cot (x)=\frac{\cos (x)}{\sin (x)}=\frac{1}{\tan (x)} \\
\hline
\end{array}
$$

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

$$
\sec ^{2}(x)=1+\tan ^{2}(x)
$$

$$
\sin (x+2 \pi)=\sin (x) \quad \sin (-x)=-\sin (x) \quad \sin (\pi-x)=\sin (x)
$$

$$
\cos (x+2 \pi)=\cos (x)
$$

$$
\cos (-x)=\cos (x)
$$

$$
\cos (\pi-x)=-\cos (x)
$$

The graph of $y=\sin (x)$ has the following specific values:

Indeed, the graph of $y=\cos (x)$ is that of $y=\sin (x)$ shifted to the left by $\frac{\pi}{2}$.

