Common Logarithmic Functions and Properties of Logarithms - Handout/Worksheet

NAME:
DATE:

1. Recall some properties of the exponential function:
(a) $b^{x+y}=b^{x} b^{y}$
(b) $b^{x-y}=\frac{b^{x}}{b^{y}}$
(c) $\left(b^{x}\right)^{n}=b^{n x}$
2. For all positive real numbers $0<b \neq 1, x>0, y>0$, and real numbers n :
(a) $\log _{b}(x \cdot y)=\log _{b}(x)+\log _{b}(y)$
(b) $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
(c) $\log _{b}\left(x^{n}\right)=n \cdot \log _{b}(x)$
3. Translate the logarithmic statement into an equivalent exponential statement
(a) $\log .0001=-4$
(b) $\ln 5=1.609$
4. Translate the exponential statement into an equivalent logarithmic statement
(a) $10^{-5}=0.00001$
(b) $e^{1.56}=4.759$
5. Sketch the graph of $2 \ln (x+4)$ and state its domain.

6. Suppose $f(x)=A \ln x+B$ for some constants A and B and that $f(e)=5, f\left(e^{2}\right)=8$. Find A and B.
7. Use the rules for logarithms to write the expression as a single logarithm.
(a) $\ln x^{3}-5 \ln y$
(c) $\ln \left(e^{4} x^{2}\right)-\ln \left(e y^{3}\right)+2$
(b) $\log \left(t^{2}-64\right)-\log (t+8)$
(d) $\log \left(10 y^{2}\right)+\log \left(20 x^{2}\right)-1$
8. Let $u=\ln x$ and $v=\ln y$. Write $\ln \left(\frac{\sqrt{x y}}{x^{2} y^{3}}\right)$ in terms of u and v.
9. Solve for x
(a) $10^{2 x-8}=0.01$
(c) $5^{x-7}=2^{x}$
(b) $\log _{2}(x+5)=\log _{2}(x+3)+4$
(d) $7^{2 x+3}=11^{3 x-6}$

Page 3

