Theory of Equations - Handout

1. The Rational Root Test If a rational number r / s (in lowest terms) is a root of the polynomial

$$
a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

where the coefficients $a_{n}, \ldots, a_{1}, a_{0}$ are integers with $a_{n} \neq 0, a_{0} \neq 0$, then r is a factor of the constant term a_{0} and s is a factor of the leading coefficient a_{n}.
2. Fundamental Theorem of Algebra: Every nonconstant polynomial has a root in the complex number system.
3. Factorization over the Complex Numbers: Let $f(x)$ be a polynomial of degree $n>0$ with leading coefficient d. Then there are (not necessarily distinct) complex numbers $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
f(x)=d\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right) .
$$

Furthermore, $c_{1}, c_{2} \cdots, c_{n}$ are the only roots of $f(x)$.
4. Number of Roots: Every polynomial of degree $n>0$ has at most n different roots in the complex number system.
5. A polynomial of degree n has exactly n roots.
6. Conjugate Roots Theorem: Let $f(x)$ be a polynomial with real coefficients. If the complex number z is a root of $f(x)$, then its conjugate \bar{z} is also a root of $f(x)$.
7. Factorization over the Real Numbers: Every nonconstant polynomial with real coefficients can be factored as a product of linear and quadratic polynomials with real coefficients in such a way that the quadratic factors, if any, have no real roots.

