Absolute Value - Handout

The **absolute value** of a real number c, denoted by |c| the non-negative number which is equal in magnitude (or size) to c, is the number resulting from disregarding the sign:

$$|c| = \begin{cases} c & \text{if } c \ge 0, \\ -c & \text{if } c < 0. \end{cases}$$

Inequality notation	Number line	Interval notation
$a \leq x \leq b$	a b	[a,b]
a < x < b	a b	(a,b)
$a \leq x < b$	a b	[a,b)
$a < x \leq b$		(a,b]
$a \leq x$		$[a,\infty)$
a < x	a	(a,∞)
$x \leq b$	b	$(-\infty, b]$
x < b	$\xrightarrow{} \overset{\circ}{b}$	$(-\infty, b)$

Formally, we define the interval [a, b], the set of all real numbers x such that $a \le x \le b$, using set builder notation:

$$[a,b] = \{ x \mid a \le x \le b \}$$