Definition of Common Logarithms

Let u and v be real numbers, with v > 0. Then

$$\log v = u$$
 exactly when $10^u = v$.

In other words.

 $\log v$ is the exponent to which 10 must be raised to produce v.

Definition of Natural Logarithms

Let u and v be real numbers, with v > 0. Then

$$\ln v = u \qquad \text{exactly when} \qquad e^u = v$$

In other words,

 $\ln \nu$ is the exponent to which e must be raised to produce ν .

Handout for Properties of Logarithms Section Section

Natural Logarithms

- 1. In v is defined only when v > 0;
- 2. $\ln 1 = 0$ and $\ln e = 1$;
- 3. $\ln e^k = k$ for every real number k;
- 4. $e^{\ln v} = v$ for every v > 0;

Common Logarithms

 $\log v$ is defined only when v > 0.

 $\log 1 = 0$ and $\log 10 = 1$.

 $\log 10^k = k$ for every real number k.

 $10^{\log v} = v$ for every v > 0.

Exponential Functions

Every exponential growth or decay function can be written in the form

$$f(x) = Pe^{kx}$$

where f(x) is the amount at time x, P is the initial quantity, and k is positive for growth and negative for decay.

Domain: all positive real numbers

Range: all real numbers

x-intercept: 1

Vertical Asymptote: y-axis



