Sample Final Exam

1. Not valid: p false, q false, r true.
2. Valid
3. See class notes.
4. Not one-to-one, not onto.
5. procedure greaterthanfive $\left(a_{1}, \ldots, a_{n}:\right.$ integers $)$
answer $:=0$
for $i:=1$ to n
if $a_{i}>5$ then answer $:=$ answer +1
return answer
6. $f(n) \leq 3 n^{2}+8 n^{2}+7 n^{2}=18 n^{2}$ if $n \geq 1$; therefore $C=18$ and $k=1$ can be used.
7. Use the Euclidean algorithm to find $\operatorname{gcd}(34,21)$. 1
8. $5+11 k$
9. $P(1): 1=\frac{1 \cdot 2}{2}$, which is true since $1=1$.

$$
\begin{gathered}
P(k) \rightarrow P(k+1): 1+4+\cdots+(3(k+1)-2)=\frac{k(3 k-1)}{2}+(3 k+1) \\
=\frac{k(3 k-1)+2(3 k+1)}{2}=\frac{3 k^{2}+5 k+2}{2} \\
=\frac{(3 k+2)(k+1)}{2}=\frac{(k+1)(3(k+1)-1)}{2} .
\end{gathered}
$$

10. Must show both directions: 1) Let n be an integer, then if n is even then $5 n+4$ is even. Proof: Since n is even it can be written in the form $n=2 k$ where k is some integer. Now, $5 n+4=5(2 k)+4=10 k+4=2(5 k+2) .5 k+2$ is just some integer, call it s. So $5 n+4$ can be written as $2 s$ and so it is even. 2) If $5 n+4$ even, then n is even. Proof: Instead of proving this statement directly, we can prove the contrapositive of it, which states: If n is odd, then $5 n+4$ is odd. Since n is odd, it can be written in the form $n=2 k+1$ for some integer k. Now, $5 n+4=5(2 k+1)+1=10 k+5$. $10 k+5=5(2 k+1)$, since we know $2 k+1$ is odd, then 5 times $2 k+1$ is also odd. So $5 n+4$ is odd.
The proof is now complete.
11. 1091
