Sample Final Exam

1. Determine whether the following argument is valid:

$$p \rightarrow r$$
,

$$q \rightarrow r$$
,

$$\neg (p \lor q),$$

Therefore $\neg r$. Hint: Check if $(p \to r) \land (q \to r) \land \neg (p \lor q) \to \neg r$ is a tautology.

2. Determine whether the following argument is valid:

She is a Math Major or a Computer Science Major.

If she does not know discrete math, she is not a Math Major.

If she knows discrete math, she is smart.

She is not a Computer Science Major.

Therefore, she is smart.

- 3. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ by giving a Venn diagram proof.
- 4. Determine if the following function is one-to-one and/or onto: $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 6x^2 + 1$.
- 5. Give an algorithm (write the pseudocode) that takes a list of n integers a_1, a_2, \ldots, a_n and finds the number of integers each greater than five in the list.
- 6. Let $f(n) = 3n^2 + 8n + 7$. Show that f(n) is $O(n^2)$. Find C and k from the definition.
- 7. Use the Euclidean algorithm to find gcd(34, 21).
- 8. Solve the linear congruence $5x \equiv 3 \mod 11$
- 9. Use the Principle of Mathematical Induction to prove that $1+4+7+10+\cdots+(3n-2)=\frac{n(3n-1)}{2}$ for all $n\geq 1$.
- 10. Prove the following: Let n be an integer, then n is even if and only if 5n + 4 is even.
- 11. Compute a_5 if $a_n = 4 + \lceil 3a_n + 1 \rceil$ when n > 0 and $a_0 = 2$.