## Sample Final Exam

1. Determine whether the following argument is valid:
$p \rightarrow r$,
$q \rightarrow r$,
$\neg(p \vee q)$,
Therefore $\neg r$. Hint: Check if $(p \rightarrow r) \wedge(q \rightarrow r) \wedge \neg(p \vee q) \rightarrow \neg r$ is a tautology.
2. Determine whether the following argument is valid:

She is a Math Major or a Computer Science Major.

If she does not know discrete math, she is not a Math Major.

If she knows discrete math, she is smart.

She is not a Computer Science Major.

Therefore, she is smart.
3. Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ by giving a Venn diagram proof.
4. Determine if the following function is one-to-one and/or onto: $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=6 x^{2}+1$.
5. Give an algorithm (write the pseudocode) that takes a list of $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ and finds the number of integers each greater than five in the list.
6. Let $f(n)=3 n^{2}+8 n+7$. Show that $f(n)$ is $O\left(n^{2}\right)$. Find $C$ and $k$ from the definition.
7. Use the Euclidean algorithm to find $\operatorname{gcd}(34,21)$.
8. Solve the linear congruence $5 x \equiv 3 \bmod 11$
9. Use the Principle of Mathematical Induction to provethat $1+4+7+10+\cdots+(3 n-2)=$ $\frac{n(3 n-1)}{2}$ forall $n \geq 1$.
10. Prove the following: Let $n$ be an integer, then $n$ is even if and only if $5 n+4$ is even.
11. Compute $a_{5}$ if $a_{n}=4+\left\lceil 3 a_{n}+1\right\rceil$ when $n>0$ and $a_{0}=2$.

