Sample Exam\#4 - with solutions

1. List all positive integers less than 30 that are relatively prime to 20 .
$1,3,7,9,11,13,17,19,21,23,27,29$.
2. Find $\operatorname{gcd}\left(2^{89}, 2^{346}\right)$ by directly finding the largest divisor of both numbers. 2^{89}
3. Find $\operatorname{lcm}\left(2^{89}, 2^{346}\right)$ by directly finding the smallest positive multiple of both numbers. 2^{346}
4. Find four integers b (two negative and two positive) such that $7 \equiv b \bmod 4$. $3,7,11,15, \ldots-1,-5,-9, \ldots$
5. Find the integer a such that $a=71 \bmod 47$ and $-46 \leq a \leq 0$. -23
6. (a) Convert $(11101)_{2}$ to base 10.

29
(b) Convert $(2 A C)_{16}$ to base 10 .

684
(c) Convert (8091) $)_{10}$ to base 2.

1111110011011
(d) Convert $(101011)_{2}$ to base 8 .
(53) 8
7. Use the Euclidean algorithm to find $\operatorname{gcd}(44,52)$.

4
8. Use the Euclidean algorithm to find $\operatorname{gcd}(300,700)$.

100
9. Given that $\operatorname{gcd}(620,140)=20$, write 20 as a linear combination of 620 and 140 .

$$
620 \cdot(-2)+140 \cdot 9
$$

10. Find an inverse of 17 modulo 19.

9
11. (a) Solve the linear congruence $5 x \equiv 3 \bmod 11$

$$
5+11 k
$$

(b) Solve the linear congruence $15 x \equiv 31 \bmod 47$ given that the inverse of 15 modulo 47 is 22 .

24
(c) Solve the linear congruence $31 x \equiv 57 \bmod 61$.

53
12. Show that 7 is a primitive root of 13 .

The powers of 7 modulo 13 are $7,10,5,9,11,12,6,3,8,4,2,1$
13. Find the discrete logarithms of 5 and 8 to the base 7 modulo 13 .

3, 9
14. Use the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 2 \bmod 3, x \equiv 1 \bmod 4$, and $x \equiv 3 \bmod 5$.

Since 3, 4, and 5 are pairwise relatively prime, we can use the Chinese remainder theorem. The answer will be unique modulo $3 \cdot 4 \cdot 5=60$. Using the notation in the text,we have $a_{1}=2, m_{1}=3, a_{2}=1, m_{2}=4, a_{3}=3, m_{3}=5, m=60$, $M_{1}=60 / 3=20, M_{2}=60 / 4=15, M_{3}=60 / 5=12$. Then we need to find inverses y_{i} of M_{i} modulo m_{i} for $i=1,2,3$. This can be done by inspection (trial and error), since the moduli here are so small, or systematically using the Euclidean algorithm; we find that $y_{1}=2, y_{2}=3$, and $y_{3}=3$. Thus our solution is $x=2 \cdot 20 \cdot 2+1 \cdot 15 \cdot 3+3 \cdot 12 \cdot 3=233 \equiv 53$ $\bmod 60$. So the solutions are all integers of the form $53+60 k$, where k is an integer.
15. Find the sequence of pseudorandom numbers generated by the power generator $x_{n+1}=$ $x_{n}^{2} \bmod 17$, and seed $x_{0}=5$.
$8,13,16,1,1,1, \ldots$
16. A message has been encrypted using the function $f(x)=(x+5) \bmod 26$. If the message in coded form is JCFHY, decode the message.

EXACT

17. Encrypt the message BALL using the RSA system with $n=37 \cdot 73$ and $e=7$, translating each letter into integers $(A=00, B=01, \ldots)$ and grouping together pairs of integers.

15060075
18. What is the original message encrypted using the RSA system with $n=43 \cdot 59$ and $e=$ 13 if the encrypted message is 066719470671 ? (To decrypt, first find the decryption exponent d which is the inverse of $e=13$ modulo $42 \cdot 58$.)
SILVER

