
Finite State Automata and the Tower of Hanoi

The first time you were introduced to functions, your instructor may have
described a function as a machine that, when given an input value, produces
an associated output value. Let’s actually design a “function machine,” called
a transducer. A transducer is a kind of computer, or automaton, that behaves
according to encoded instructions.

For most of this chapter, a transducer is able to read a finite binary string,
one character at a time, reading from left to right. The domain of a transducer
will consist of finite binary strings; not the binary numbers represented by these
strings, but the strings themselves. For example, the string 00 is a different string
than the string 000. In Section 1, we will consider transducers that read ternary
strings.

We begin by listing the general form and requirements of a deterministic finite-
state transducer which we will describe in more detail immediately after:

• It has a finite number of states.

• One of its states is designated as its initial state.

• It can read only a defined finite set of characters, called the alphabet, one at
a time.

• Its input strings must be of finite length.

• Given a state and any possible character, a set of instructions determines
specific responses (this is the deterministic part of its name).

• It can read that the string has come to an end, at which point it enters its
initial state and halts.

The states help determine how the transducer behaves. As the string is fed in
the transducer is configured in its initial state (indicated in a diagram by dashed
lines), and it reads the first character. When the transducer reads a character, it
responds in two ways: 1) it prints out a binary character; and 2) it enters a new
state. It then reads the next character of the string and responds to it. When the last
character is read, the transducer returns to its initial state. It has finished printing
the output associated with the given input. Note that the length of the output string
always equals the length of the input string.

We will start with an extremely simple function machine, Az, called the “Zero
Transducer.” The function rule is going to be: for any character of the given input

1



z 0/0

1/0

Figure 1: The Zero Transducer automaton Az

a e0/1

1/0

1/1

0/0

Figure 2: The transducer Aa for automorphism a

string, print out the 0 character. See Figure 1 for a diagram of this transducer.
The circle labelled z represents the initial (and only) state, and the 1/0 at the top
instructs the transducer, or automaton, to print a 0 when it reads a 1, while the
arrow directs the automaton to return to state z; the 0/0 on the right instructs the
automaton to print a 0 when it reads a 0, while the arrow directs the automaton
again to return to state z. For example, when we feed the string 101 into Az,
moving left to right, Az changes 1 to 0, leaves 0 alone and then changes 1 to zero
to yield 000 as the output.

Although Az serves as a simple example of a transducer, the function produced
is not one we are interested in here because it does not act as an “automorphism
machine.” In this context, we are interested in transducers which represent
automorphism machines. If we want our automata to act as automorphism machines,
their encoded rules must produce a function that is a bijection whose domain is
the same as its range, so the strings that are output must come from the same
set of strings that are allowed as input. The Zero Transducer does not produce a
bijection, so it is not an automorphism.

Figure 2 shows a transducer called Aa that requires two states to accomplish
its function assignment, which is to change the initial character (from 0 to 1, or 1
to 0), leaving the remaining input characters the same.

For example, when we feed the string 101 into Aa, moving left to right, 1 is
changed to 0, the transducer enters state e (the identity state), and the rest of the

2



string remains the same, producing an output of 001.
Although it is possible to define transducers with an infinite number of states,

we will work here only with finite-state transducers and only a finite number of
transducers at a time. The consequence is that all the groups generated by our
automata will be finitely-generated. There are also different types of automata
than the transducers we have described, but here we will work only with transducers;
hence, when we refer to “automata” without further explanation, we will mean
“deterministic finite-state transducers.”

Figure 3 is an example of the automaton representing a familiar group, the
Lamplighter Group L2.

a b

0/1

1/0

1/1

0/0

Figure 3: The Lamplighter automaton A

1 Tower of Hanoi
Traditionally, the Tower of Hanoi game is played with three pegs and any number
of disks of different sizes which fit onto any of the pegs. In this section, we will
focus on a game played with three disks. The disks are initially stacked on the first
peg in size order with the smallest on top. The object of the game is to move the
stack from the first peg to another, retaining the size order. The rules for moving
disks are:

1. Only one disk can be moved at a time, from the top of a stack, to any other
peg, with the following restriction:

2. No disk may be placed on top of a disk smaller than itself.

Figure 4 shows the optimum sequence of moves to win the game played with
three disks.

The game was invented in 1883 by E. Lucas, a French mathematician, who
may have been inspired by a legend that may have originated in Vietnam or India.
The legend describes a room in a temple with three posts and 64 golden disks,

3



Moved disk from peg 1 to peg 3.

Moved disk from peg 1 to peg 2.

Moved disk from peg 3 to peg 2.

Moved disk from peg 1 to peg 3.

Moved disk from peg 2 to peg 1.

Moved disk from peg 2 to peg 3.

Moved disk from peg 1 to peg 3.

Figure 4: The Tower of Hanoi played with 3 disks

4



each of different size. Monks are tasked with moving the disks according to the
above rules. It is said that when the task is completed, the world will come to an
end.

It is well-known that to complete a Tower of Hanoi game with three pegs and
n disks, the shortest number of moves required is 2n− 1. For the 64-disk game,
moving the disks at the rate of one per second will take about 585 billion years.

Since the game is easy to learn, yet challenging to complete, it has made many
appearances in popular culture. In the 1959 science fiction movie “Now Inhale,”
the Earthling hero is allowed to play one game from his home planet before he is
executed. He chooses to play the Tower of Hanoi (presumably with many disks).
In 1966, it appeared as a 10-disk game in a “Dr. Who” episode. In the 2011
movie “Rise of the Planet of the Apes,” the game is used as an intelligence test for
captive apes. It has also appeared in the television show “Survivor” and one of the
Star Wars movies, among others.

An automaton can be built to play the Tower of Hanoi for a given number of
pegs, which can accommodate any number of disks. If we wish to change the
number of pegs, a new automaton needs to be built, with a different number of
characters in the alphabet and a different number of states.

Here, we will consider the automaton for the traditional version, using three
pegs. A summary of ingredients necessary for the 3-peg, 3-disk game is:

• three pegs, labelled 1, 2, and 3

• three nontrivial states ai j (i 6= j) in the automaton, each governing the possible
moves between peg i and peg j

• a 3-string giving the current position of each of the three disks

• three disks, named s,m, l.

To identify the positions of the disks on the three pegs, we need an alphabet of
three characters; hence, the automaton H3 (see Figure 5) represents automorphisms
of the infinite complete rooted ternary tree. Each state in the automaton represents
a possible move between one peg and another, and we name the states accordingly:
state a12 as the initial state governs possible disk moves between peg 1 and peg
2, in either direction; using a23 governs a disk moving between pegs 2 and 3; and
using a13 governs a disk moving between pegs 1 and 3.

Notice that each state is unrelated to the others. They do not refer to each other,
only e, which makes sense because only one disk can be moved at a time. The

5



a12

e

a13a23

1/22/1

3/3

1/3

3/1

2/2
2/3

3/2

1/1

Figure 5: Automaton of H3

automaton is configured so that you cannot make a “wrong move” (big disk on
top of smaller disk, or moving a disk not at the top of the stack), but you can make
moves that create unproductive steps. Whenever a disk is going to be moved, an
initial state in H3 must be chosen. Only one choice of initial state will move the
game toward completion.

The number of disks is represented by the length of an input string. H3 works
for any number of disks; but once the number of disks is fixed at k, so is the
length of the strings. In our game we will use three disks, so every string must
have length three. The character in the first position represents the location of the
smallest disk (on peg 1, 2, or 3); the character in the second position represents the
location of the middle-sized disk; and the character in the third position represents
the location of the largest disk.

Example 1. Let’s begin the game, with the three disks (s, m, l) stacked in size
order on peg 1. Refer to the automaton in Figure 5. The string that represents this
configuration is 111. The object is to move all the disks to peg 3.

Suppose we choose a23 as the initial state, which is the state that governs
moves between peg 2 and peg 3. Since all the disks are on peg 1, there are no
possible moves between peg 2 and peg 3, and the input string 111 does not change;
therefore, as a “move,” it is unproductive. However, starting with a13 as the initial
state, disk s moves to peg 3 and the output string is 311.

The next move begins with choosing an initial state for the input 311, preferably
avoiding unproductive moves. If we choose correctly, we can complete the game
in 7 moves.

6



3

Once the number of disks to use is fixed at k (hence, the length of every string
is fixed at k), we are only interested in permutations of the ternary rooted tree at
level k. Thus, a Schreier graph is extremely useful. Figure 6 shows the Schreier
graph for H3 at level 3, which is a far more useful tool in studying the game than
the automaton. Notice how easy it is to find the shortest path from the string 111
(representing all disks on peg 1) to the string 333 (representing all disks on peg
3).

222

122 322

132 312

332 232 212 112

331 113

231 131 313 213

211 121 323 233

111 311 321 221 223 123 133 333

a13

a23 a12

a23a12

a13

a12

a12

a23

a13a13

a23 a13

a23

a12

a23a12

a13 a12a23

a12

a23

a13

a23

a12

a13a13

a23 a12 a13 a13a12

a13 a12

a13

a23 a13 a12

a23

a23

a12

a13

Figure 6: Schreier graph of H3 for level 3

7


