Sample Exam\#4 - with solutions

1. List all positive integers less than 30 that are relatively prime to 20 .
2. Find $\operatorname{gcd}\left(2^{89}, 2^{346}\right)$ by directly finding the largest divisor of both numbers.
3. Find $\operatorname{lcm}\left(2^{89}, 2^{346}\right)$ by directly finding the smallest positive multiple of both numbers.
4. Find four integers b (two negative and two positive) such that $7 \equiv b \bmod 4$.
5. Find the integer a such that $a=71 \bmod 47$ and $-46 \leq a \leq 0$.
6. (a) Convert $(11101)_{2}$ to base 10.
(b) Convert $(2 A C)_{16}$ to base 10 .
(c) Convert $(8091)_{10}$ to base 2.
(d) Convert $(101011)_{2}$ to base 8 .
7. Use the Euclidean algorithm to find $\operatorname{gcd}(44,52)$.
8. Use the Euclidean algorithm to find $\operatorname{gcd}(300,700)$.
9. Given that $\operatorname{gcd}(620,140)=20$, write 20 as a linear combination of 620 and 140 .
10. Find an inverse of 17 modulo 19.
11. (a) Solve the linear congruence $5 x \equiv 3 \bmod 11$
(b) Solve the linear congruence $15 x \equiv 31 \bmod 47$ given that the inverse of 15 modulo 47 is 22 .
(c) Solve the linear congruence $31 x \equiv 57 \bmod 61$.
12. Show that 7 is a primitive root of 13 .
13. Find the discrete logarithms of 5 and 8 to the base 7 modulo 13 .
14. Use the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 2 \bmod 3, x \equiv 1 \bmod 4$, and $x \equiv 3 \bmod 5$.
15. Find the sequence of pseudorandom numbers generated by the power generator $x_{n+1}=$ $x_{n}^{2} \bmod 17$, and seed $x_{0}=5$.
16. A message has been encrypted using the function $f(x)=(x+5) \bmod 26$. If the message in coded form is JCFHY, decode the message.
17. Encrypt the message BALL using the RSA system with $n=37 \cdot 73$ and $e=7$, translating each letter into integers $(A=00, B=01, \ldots)$ and grouping together pairs of integers.
18. What is the original message encrypted using the RSA system with $n=43 \cdot 59$ and $e=$ 13 if the encrypted message is 066719470671 ? (To decrypt, first find the decryption exponent d which is the inverse of $e=13$ modulo $42 \cdot 58$.)
