# Handout - Worksheet 4.5 \& 4.6 - Applications of Congruences and Cryptography 

Hashing Functions: A hashing function $h$ assigns memory location $h(k)$ to the record that has $k$ as its key. One of the most common hashing functions is the function

$$
h(k)=k \quad \bmod m
$$

where $m$ is the number of available memory locations.
Pseudorandom Numbers: The most commonly used procedure for generating pseudorandom numbers is the linear congruential method.

We choose four integers: the modulus $m$, multiplier $a$, increment $c$, and seed $x_{0}$, with $2 \leq a<m, 0 \leq c<m$, and $0 \leq x_{0}<m$. We generate a sequence of pseudorandom numbers $x_{n}$, with $0 \leq x_{n}<m$ for all $n$, by successively using the recursively defined function $x_{n+1}=\left(a x_{n}+c\right) \bmod m$.

Many computer experiments require the generation of pseudorandom numbers between 0 and 1. To generate such numbers, we divide numbers generated with a linear congruential generator by the modulus: that is, we use the numbers $x_{n} / m$.
A cryptosystem is a five-tuple $(P, C, K, E, D)$, where $P$ is the set of plaintext strings, $C$ is the set of ciphertext strings, $K$ is the keyspace (the set of all possible keys), $E$ is the set of encryption functions, and $D$ is the set of decryption functions. We denote by $E_{k}$ the encryption function in $E$ corresponding to the key $k$ and $D_{k}$ the decryption function in $D$ that decrypts ciphertext that was encrypted using $E_{k}$, that is $D_{k}\left(E_{k}(p)\right)=p$, for all plaintext strings $p$.

1. Which memory locations are assigned by the hashing function $h(k)=k \bmod 101$ to the records of insurance company customers with these Social Security numbers?
(a) 104578690
(b) 432222187
2. What sequence of pseudorandom numbers is generated using the linear congruential generator $x_{n+1}=\left(4 x_{n}+1\right) \bmod 7$ with seed $x_{0}=3$ ?
3. Encrypt the message STOP POLLUTION by translating the letters into numbers, applying the encryption function $f(p)=(p+4) \bmod 26$, and then translating the numbers back into letters.
4. Decrypt this message encrypted using the shift cipher $f(p)=(p+10) \bmod 26$.
