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Goals:

1 The “intellectual core” of computer science - review of computational
complexity.

2 Classical key exchange protocols and RSA cryptosytems

3 Moving from the classical to the quantum

4 What is a quantum bit (qubit)?

5 Advantages of quantum computation vs. classical computation

6 Reversible logic Gates, quantum logic gates

7 Breaking RSA! - Shor’s algorithm for the quantum factorization of
integers

8 What else can we do? Grover’s search procedure.

9 Conclusions and where are we headed?

10 References
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Computational Complexity - Hard, Harder, Hardest

Efficient Algorithms

Some polynomial time algorithms we learned about this semester:

1 The linear search procedure:

Θ(n).

2 The bubble sort procedure:Θ(n2).

3 Matrix multiplication:Θ(n3).

Tractability

A problem that is solvable using an algorithm with polynomial (or better)
worst-complexity is called tractable, because the expectation is that the
algorithm will produce the solution to the problem for reasonably sized
input in a relatively short time.

Problems that cannot be solved using an algorithm with worst-case
polynomial time complexity are called intractable.
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Some important classes of problems

P and NP

The class problems which are tractable is denoted by P.

There are many problems for for which a solution, once found, can be
recognized as correct in polynomial time - even though the solution itself
might be hard to find (no poly-time algorithm to find the solution). The
class of these problems is referred to as NP.

A familiar NP problem

The factoring problem is in NP but outside of P because no known
algorithm for a classical computer can solve it in only a polynomial
number of steps - instead the number of steps increases exponentially as n
increases. We will come back to this problem later!

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 4 / 37



Some important classes of problems

P and NP

The class problems which are tractable is denoted by P.

There are many problems for for which a solution, once found, can be
recognized as correct in polynomial time - even though the solution itself
might be hard to find (no poly-time algorithm to find the solution). The
class of these problems is referred to as NP.

A familiar NP problem

The factoring problem is in NP but outside of P because no known
algorithm for a classical computer can solve it in only a polynomial
number of steps - instead the number of steps increases exponentially as n
increases. We will come back to this problem later!

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 4 / 37



Some important classes of problems

P and NP

The class problems which are tractable is denoted by P.

There are many problems for for which a solution, once found, can be
recognized as correct in polynomial time - even though the solution itself
might be hard to find (no poly-time algorithm to find the solution). The
class of these problems is referred to as NP.

A familiar NP problem

The factoring problem is in NP but outside of P because no known
algorithm for a classical computer can solve it in only a polynomial
number of steps - instead the number of steps increases exponentially as n
increases. We will come back to this problem later!

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 4 / 37



Some important classes of problems

P and NP

The class problems which are tractable is denoted by P.

There are many problems for for which a solution, once found, can be
recognized as correct in polynomial time - even though the solution itself
might be hard to find (no poly-time algorithm to find the solution). The
class of these problems is referred to as NP.

A familiar NP problem

The factoring problem is in NP but outside of P because no known
algorithm for a classical computer can solve it in only a polynomial
number of steps - instead the number of steps increases exponentially as n
increases. We will come back to this problem later!

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 4 / 37



NP-complete

There is a class of problems with the property that if any of these
problems can be solved by a an efficient algorithm, then all problems in
the class can be solved by an efficient algorithm. They are in essence the
“same” problem!!!
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Examples of NP-complete problems

1 Given the dimensions of various boxes and want a way to pack them
in your trunk.

2 Given a map, color each country red, blue or green so that no two
neighboring countries are the same.

3 Given a list of island connected by bridges and you want a tour which
visits each island exactly once. If you want to find the shortest route,
then this is known as the “Traveling Salesperson Problem.”

4 Every known algorithm for these problems will take an amount of
time that increases exponentially with the problem size.

5 These are all the “same” in that an efficient algorithm for solving one
of them will imply an efficient algorithm for solving all of them.
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P = NP?

The million dollar question (literally)

An efficient algorithm for an NP-complete problem would mean that
computer scientists’ present picture of the classes P, NP and
NP-complete was utterly wrong!!! It would mean that P = NP!

Does such an algorithm exist? This question carries a $1,000,000 reward
from the Clay Math Institute in Cambridge, Mass.

If we grant that P 6= NP, our only hope is to broaden what we mean by
“computer.”
NOTE: The factoring problem is neither known nor believed to be
NP-complete.
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RSA cryptosystems

In the RSA (Rivest, Shamir and Adleman )cryptosystem, each individual
has an encryption key (n, e) where n = pq the modulus is the product of
two large primes p and q, (say with 200 digits each), and an exponent e
that is relatively prime to (p − 1)(q − 1)

To encrypt a message, translate the text to numerical equivalents, break
into blocks mi , and then use fast modular exponentiation to compute they
encrypted blocks ci using the function ci = me

i mod n.

In order to decrypt a message sent in this scheme, once must be able to
find the decyrption key d which is the inverse of e, mod (p − 1)(q − 1).
Without knowing p and q, and only knowing n (with possibly 400 digits),
this system is difficult to break!
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Shifting focus: Classical to Quantum

Limits to Digital Computation

In 1965 Gordon Moore gave a law for the growth of computing power
which states

Moore’s Law

Computer power will double for constant cost roughly every two years.

Prediction

This dream will come to an end during this decade.

Quantum effects are beginning to interfere with electronic devices as they
are made smaller and smaller.
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Solution

Move to a different paradigm!

Can we use the counterintuitive laws of quantum mechanics to our
advantage?

Yes! In 1982 Richard Feynman and Paul Benioff independently observed
that a quantum system can perform a computation.

In 1985 David Deutsch defined quantum Turing machines, a theoretical
model for quantum computing.
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What is a qubit?

A quantum bit, or “qubit” stores information.

Physically

A qubit can be an ion which can occupy different quantum states.
The atom in the ground state corresponds to the value “0” and the
excited state, “1”.

A qubit can be a spin
1

2
particle which can be in the spin up (“0”) or

spin down (“1”) state.

A qubit can be a photon in a vertically polarized state (“1”) or a
horizontally polarized state (“0”).
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Where do qubits “live”?

Disclaimer: These mathematical objects will become clearer to you
once you have taken a class in LINEAR ALGEBRA! You are not
expected to understand these statements YET.
A qubit is a quantum object (vector) whose state lies in a two dimensional
Hilbert space.

The quantum state of N bits can be expressed as a vector in a space of
dim2N .

Dirac Notation - bras and kets

The elements of Hilbert space H are called ket vectors, state kets
or simply kets. Ex. |0〉
Let H∗ = HomC(H,C).

The elements of H∗ are called bra vectors, state bras, or simply
bras. Ex. 〈0|
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How is a qubit different from a regular bit?

Qubits exist in a continuum of states between 0 and 1 (superposition)
until they are observed.

|Ψ〉 = α0|0〉+ α1|1〉 where |α0|2 + |α1|2 = 1

We can generalize the concept of qubits to quantum registers. A state of a
quantum register of size n is a tensor product of n qubits and can be
written as

|Ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1

The size of the computational state space of a quantum register is
exponential in the physical size of the system.
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How can a cat be both dead and alive?
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What is the main advantage of quantum computation over digital
computation?

In 1985 David Deutsch found the quantum parallelism principle. This
principle allows one to evaluate a function f for distinct inputs
simultaneously.

Quantum parallelism exploits the superposition of states.

https://www.youtube.com/watch?v=IrbJYsep45E
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Reversible Logic Gates

In 1961 Landauer showed that the only logical operations that require
dissipation of energy are irreversible ones.

Logic gates are typically irreversible.

The AND-gate is obviously irreversible since given the output af = 0
we cannot say if the input (ai , bi ) is equal to (0, 0), (0, 1) or (1, 0).

The same is true for the OR, XOR, or NOR-gates.

In 1973 Bennett found that any computation can be performed using
only reversible steps.
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Example

The following is the truth table for the three-bit
CONTROL-CONTROL-NOT gate (or CCN-gate).

ai bi ci
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

af bf cf
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 1

1 1 0
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Quantum Logic Gates

Why are they reversible?

Both classical and quantum mechanics in the Hamiltonian
formulation describe only reversible processes.

Quantum logic gates generally act on a superposition of digital states.
They can be represented by operators (matrices).

Unitary matrices represent the time evolution of quantum mechanical
systems.

So quantum logic gates can be represented by unitary matrices.

The Quantum N-gate

N =

(
0 1
1 0

)
.

transforms |0〉 → |1〉 and |1〉 → |0〉.
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Quantum Circuits

The quantum circuit in the figure below accomplishes the task of
exchanging the state of the two input bits. Starting out with the state
|a, b〉
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Shor’s Algorithm is a quantum algorithm that factors an integer in
polynomial time (1994). If the integer has L digits, Shor’s algorithm takes
O(L2) to factor it.

Why should we care?

We have studied the RSA cryptosystem and we have seen that the
security of the system is based on the practical difficulty of factoring
the product of two large prime numbers, the factoring problem.

For instance, RSA-768, the largest number to be factored to date,
had 232 decimal digits and was factored over multiple years ending in
2009, using the equivalent of almost 2000 years of computing on a
single 2.2 GHz AMD Opteron processor with 2GB RAM.2!

See https://en.wikipedia.org/wiki/RSA_numbers

On a classical computer the best known method for factorization of a
number with 300 digits takes 5 · 1024 steps or with terahertz speed
150,000 years!

A quantum algorithm for factoring a 300 decimal digit number needs only
5 · 1010 steps, or with gigahertz speed less than 17 minutes!
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Shor’s Algorithm

Shor’s algorithm hinges on being able to quickly compute the period of the
following periodic function (using a quantum algorithm):

f (x) = y x mod (n)

for x = 0, 1, 2, . . .. Where n = pq, p and q prime factors.

To begin, select y randomly so that 1 < y < n and (y , n) = 1. Next, find
the period T of the function f (x) = y x mod (n). Compute z = yT/2.
Lastly, to find factors of n, compute (z + 1, n) and (z − 1, n) (can use the
Euclidean Algorithm.
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Shor’s Algorithm: An example

Factoring n = 30 using Shor’s Algorithm

Given n = 30, choose a y , so that 1 < y < 30 and (y , 30) = 1. I will
use y = 11 (but I could have chosen: 19, 29, 7, 13 or 23).

Compute values of f (x) to find the period of f (x) (by hand):

f (0) = 110 mod 30 = 1

f (1) = 111 mod 30 = 11

f (2) = 112 mod 30 = 1

f (3) = 113 mod 30 = 11

f (4) = 112 mod 30 = 1 . . .

T is obvious 2. Now compute z = yT/2 = 112/2 = 111 = 11.

Finally factors of n = 30 are (z + 1, 30) = (12, 30) = 6 and
(z − 1, 30) = (10, 30) = 10. Both 6 and 10 are factors of 30.
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Some notes:

This factoring method fails sometimes, for instance, when the period
T is odd. HOWEVER,

If y (1 < y < n) is randomly selected, Ekert and Jozsa showed that
the probability that two numbers have gcd = 1 is greater than
1/ log2(n) so the probability of failure is small. See
https://doi.org/10.1103/RevModPhys.68.733.

Also note, that for y = 11, 19, and29, T = 2 and for
y = 7, 13, and23, T = 4.

Your turn to try!

Use Shor’s algorithm to factor n = 21. You may use our Python code for
fast modular exponentiation to help you find the period of f (x) and the
code for computing the gcd if you would like.
https://trinket.io/python/653108cbc9

https://trinket.io/python/2ee4b2d236

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 23 / 37

https://doi.org/10.1103/RevModPhys.68.733
https://trinket.io/python/653108cbc9
https://trinket.io/python/2ee4b2d236


Some notes:

This factoring method fails sometimes, for instance, when the period
T is odd. HOWEVER,

If y (1 < y < n) is randomly selected, Ekert and Jozsa showed that
the probability that two numbers have gcd = 1 is greater than
1/ log2(n) so the probability of failure is small. See
https://doi.org/10.1103/RevModPhys.68.733.

Also note, that for y = 11, 19, and29, T = 2 and for
y = 7, 13, and23, T = 4.

Your turn to try!

Use Shor’s algorithm to factor n = 21. You may use our Python code for
fast modular exponentiation to help you find the period of f (x) and the
code for computing the gcd if you would like.
https://trinket.io/python/653108cbc9

https://trinket.io/python/2ee4b2d236

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 23 / 37

https://doi.org/10.1103/RevModPhys.68.733
https://trinket.io/python/653108cbc9
https://trinket.io/python/2ee4b2d236


Some notes:

This factoring method fails sometimes, for instance, when the period
T is odd. HOWEVER,

If y (1 < y < n) is randomly selected, Ekert and Jozsa showed that
the probability that two numbers have gcd = 1 is greater than
1/ log2(n) so the probability of failure is small. See
https://doi.org/10.1103/RevModPhys.68.733.

Also note, that for y = 11, 19, and29, T = 2 and for
y = 7, 13, and23, T = 4.

Your turn to try!

Use Shor’s algorithm to factor n = 21. You may use our Python code for
fast modular exponentiation to help you find the period of f (x) and the
code for computing the gcd if you would like.
https://trinket.io/python/653108cbc9

https://trinket.io/python/2ee4b2d236

Marianna Bonanome City Tech An Introduction to Quantum Algorithms for MAT 2440 April 18, 2019 23 / 37

https://doi.org/10.1103/RevModPhys.68.733
https://trinket.io/python/653108cbc9
https://trinket.io/python/2ee4b2d236


The Quantum Search Algorithm

In 1996 Lov K. Grover gave a quantum algorithm for searching an
unsorted list with N entries.

By having the input and output in superpositions of states one can
find an object in O(N1/2) quantum mechanical steps instead of O(N)
classical steps for the worst-case linear search.

Suppose one wants to search through N elements, indexed 0, 1, 2, . . . ,
N − 1.

Assume N = 2n so the index is stored in n bits and that the search
problem has one solution.

Define a function f (x), such that for x ∈ {0, 1, . . . ,N − 1}

f (x) =

{
0 if x is not a solution
1 if x is a solution.
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An oracle is supplied which has the ability to recognize the solutions for the
search problem. Recognition is signalled by the use of an oracle qubit |q〉.

The oracle, O, is a unitary operator defined on the computational basis
|0〉, |1〉.
The action of the oracle is

O|x〉|q〉 = |x〉|q ⊕ f (x)〉

where x is the index register and |q〉 is the oracle qubit.
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In order to achieve the correct solution with probability near 1, one must

apply the Grover iteration O
(√

N
)

times if there is a single solution.

Boyer, Brassard, Høyer and Tapp showed that if it is known in advance
that there are M solutions to the search problem, one must apply the

Grover iteration O

(√
N
M

)
times.
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Geometric Visualization

One can view the Grover iteration as a rotation in the two dimensional
Hilbert space spanned by the initial vector |ψ〉 and the state that consists
of the superposition of the solutions to the search problem.

Let the notation
∑

x
′ indicate the sum over all the x which are

solutions to the search problem.

Let
∑

x
′′ indicate the sum over all the x which are not solutions.

Then one can describe the following two states:

|α〉 = 1√
N−M

∑
x
′′|x〉 and

|β〉 = 1√
M

∑
x
′|x〉
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Figure: The action of a single Grover iteration G.

No matter how many times G is applied to |ψ〉, the vector remains in
the plane spanned by |α〉 and |β〉.

In fact, one also knows the angle of rotation since cos
(
θ
2

)
=
√

(N−M)
N .

Each application of G rotates the vector |ψ〉 closer to alignment with
the vector |β〉.
When this occurs, a measurement in the computational basis produces
one of the outcomes superimposed on |β〉 with high probability.

This is a solution to the search problem.
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Conclusions:

Until today there are only two basic quantum algorithmic methods
known.

I Shor’s Algorithm for the factorization of integers.

I Grover’s Search Algorithm.

Quantum algorithms have the potential to demonstrate that for some
problems quantum computation is more efficient than classical
computation.

A goal is to determine for which problems quantum computers are
faster than classical computers.

Two important quantum complexity classes are BQP and QMA which
are the bounded-error quantum analogues of P and NP.

Goal: Find out where these classes lie with respect to classical
complexity classes such as P, NP, PP (problems solvable by
probabilistic Turning machine in poly-time), PSPACE (problems that
can be solved by a Turing machine using a poly-space) and other
complexity classes.
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are the bounded-error quantum analogues of P and NP.

Goal: Find out where these classes lie with respect to classical
complexity classes such as P, NP, PP (problems solvable by
probabilistic Turning machine in poly-time), PSPACE (problems that
can be solved by a Turing machine using a poly-space) and other
complexity classes.
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Our best guess:

The diagram depicts the class of problems a quantum computer would
solve efficiently, BQP (”bounded error, probabilistic, polynomial time”),
might relate to other fundamental classes of computational problems.
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Timeline:

1998
I First working 3-qubit Nuclear Magnetic Resonance (NMR) computer.
I First execution of Grover’s algorithm on an NMR computer.

2000
I First working 5-qubit NMR computer demonstrated at the Technical

University of Munich.
I First execution of order finding (part of Shor’s algorithm) at IBM’s

Almaden Research Center and Stanford University.
I First working 7-qubit NMR computer demonstrated at the Los Alamos

National Laboratory.

2001
I First execution of Shor’s algorithm at IBM’s Almaden Research Center

and Stanford University. The number 15 was factored.
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2006
I First 12 qubit quantum computer benchmarked at the Institute for

Quantum Computing (IQC) and PI in Waterloo.

2008
I D-Wave Systems claims to have working 28-qubit quantum computer.

2009
I Google collaborates with D-Wave Systems on image search technology

using quantum computing.
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2010
I D-Wave claims to have developed quantum annealing and introduces

their product called D-Wave One. The company claims this is the first
commercially available quantum computer.

I Practical error rates achieved.

2012
I Physicists Create a Working Transistor From a Single Atom.
I D-Wave claims a quantum computation using 84 qubits.

2013
I Documents leaked by Edward Snowden revealed that the NSA worked

to ”Insert vulnerabilities into commercial encryption systems, IT
systems, networks, and endpoint communications devices used by
targets” as part of the Bullrun program.
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2014
I Documents leaked by Edward Snowden also confirm the Penetrating

Hard Targets project, by which the NSA seeks to develop a quantum
computing capability for cryptography purposes.

2015
I Quantum error detection code using a square lattice of four

superconducting qubits.
I D-Wave Systems Inc. announced on 22 June that it had broken the

1000 qubit barrier.

2016
I Google, using an array of 9 superconducting qubits developed by the

Martinis group and UCSB, accurately simulates a hydrogen molecule.
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2017
I D-Wave Systems Inc. announced on 24 January general commercial

availability of the D-Wave 2000Q quantum annealer, with 2000 qubits.
I Working blueprint for a microwave trapped ion quantum computer

published in Science Advances by international collaborators.
I IBM unveils 17-qubit quantum computerand a better way of

benchmarking it.
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2018
I In late 2017 and early 2018 IBM, Intel, and Google each reported

testing quantum processors containing 50, 49, and 72 qubits,
respectively, all realized using superconducting circuits.

I In July 2018, a team led by the University of Sydney has achieved the
world’s first multi-qubit demonstration of a quantum chemistry
calculation performed on a system of trapped ions, one of the leading
hardware platforms in the race to develop a universal quantum
computer.
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Thank you!
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