Worksheet 4.1 & 4.2 - Divisibility and Modular Arithmetic and Integer

Representations of Algorithms	•
1. What are the quotient and remainder when	
(a) 44 is divided by 8?	
(b) 777 is divided by 21?	

(d) -1 is divided by 23?

(c) -123 is divided by 19?

- (e) -2002 is divided by 87?
- (f) 0 is divided by 17?
- (g) 1,234,567 is divided by 1001?
- (h) -100 is divided by 101?
- 2. Let m be a positive integer. Show that $a \mod m = b \mod m$ if $a \equiv b \pmod m$.
- 3. Evaluate these quantities.
 - (a) $-17 \mod 2$
 - (b) 144 mod 7
 - (c) $-101 \mod 13$
 - (d) 199 mod 19
- 4. Decide whether each of these integers is congruent to 3 modulo 7.
 - (a) 37
 - (b) 66
 - (c) -17
 - (d) -67
- 5. Find each of these values.
 - (a) $(177 \mod 31 + 270 \mod 31) \mod 31$
 - (b) $(177 \mod 31 \times 270 \mod 31) \mod 31$
- 6. Convert the decimal expansion of 100632 to a binary expansion.
- 7. Convert the binary expansion of each of these integers to a decimal expansion.
 - (a) $(11011)_2$
 - (b) $(1010110101)_2$

- 8. Convert the octal and hexadecimal expansion of each of these integers to a binary expansion.
 - (a) $(572)_8$
 - (b) $(1604)_8$
 - (c) $(80E)_{16}$
 - (d) $(135AB)_{16}$