Sample Exam \#3

1. Write the pseudocode for an algorithm that takes a list of n integers $a_{1}, a_{2}, \ldots, a_{n}$ and finds the number of integers each greater than five in the list.
2. Write the pseudocode for a brute-force algorithm that finds the largest product of two numbers in a list $a_{1}, a_{2}, \ldots, a_{n}(n \geq 2)$ that is less than a threshold N.
3. List all the steps used to search for 26 in the list: $4,6,7,13,16,20,26,31$ using
(a) a linear search
(b) a binary search
4. Use the bubble sort algorithm to sort $31,16,7,6,20$, show the lists obtained at each step.
5. Use the definition of big- O to prove that $1^{3}+2^{3}+\cdots+n^{3}$ is $O\left(n^{4}\right)$.
6. Let $f(n)=3 n^{2}+8 n+7$. Show that $f(n)$ is $O\left(n^{2}\right)$. Find the witnesses C and k from the definition.
7. Prove that $\frac{x^{3}+7 x^{2}+3}{2 x+1}$ is $\Theta\left(x^{2}\right)$
8. Find all pairs of functions in this list that are of the same order: $n^{2}+\log (n), 2^{n}+3^{n}$, $100 n^{3}+n^{2}, n^{2}+2^{n}, n^{2}+n^{3}, 3 n^{3}+2^{n}$.
9. Suppose you have two different algorithms for solving a problem. To solve a problem of size n, the first algorithm uses exactly $n \sqrt{n}$ operations and the second algorithm uses exactly $n^{2} \log (n)$ operations. As n grows, which algorithm uses fewer operations?
10. For the following questions, find the best big- O notation to describe the complexity of the algorithm. Choose your answers from the following:

$$
1, \log _{2}(n), n, n \log _{2}(n), n^{2}, n^{3}, \ldots, 2^{n}, n!
$$

(a) An algorithm that prints all subsets of size three of the set $\{1,2,3, \ldots, n\}$.
(b) The number of print statements in the following:

$$
\begin{gathered}
i:=1, j:=1 \text { while } i \leq n \\
\text { while } j \leq i \\
\quad \text { print hello; } \\
j:=j+1 \\
i:=i+1
\end{gathered}
$$

(c) A linear search to find the smallest number in a list of n numbers.
11. Give a big- O estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm:
$t:=0$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \quad \text { for } j=1 \text { to } n \\
& t:=(i t+j t+1)^{2}
\end{aligned}
$$

