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The Complexity of Algorithms
● Given an algorithm, how efficient is this algorithm for solving 

a problem given input of a particular size? To answer this 
question, we ask:
● How much time does this algorithm use to solve a problem?
● How much computer memory does this algorithm use to solve a 

problem?
● When we analyze the time the algorithm uses to solve the 

problem given input of a particular size, we are studying the 
time complexity of the algorithm.

● When we analyze the computer memory the algorithm uses to 
solve the problem given input of a particular size, we are 
studying the space complexity of the algorithm.



The Complexity of Algorithms
● In this course, we focus on time complexity. The space 

complexity of algorithms is studied in later courses.
● We will measure time complexity in terms of the number of 

operations an algorithm uses and we will use big-O and 
big-Theta notation to estimate the time complexity.

● We can use this analysis to see whether it is practical to use 
this algorithm to solve problems with input of a particular 
size. We can also compare the efficiency of different 
algorithms for solving the same problem.

● We ignore implementation details (including the data 
structures used and both the hardware and software 
platforms) because it is extremely complicated to consider 
them.



Time Complexity
● To analyze the time complexity of algorithms, we determine the 

number of operations, such as comparisons and arithmetic 
operations (addition, multiplication, etc.). We can estimate the 
time a computer may actually use to solve a problem using the 
amount of time required to do basic operations. 

● We ignore minor details, such as the “house keeping” aspects of 
the algorithm.

● We will focus on the worst-case time complexity of an algorithm. 
This provides an upper bound on the number of operations an 
algorithm uses to solve a problem with input of a particular size.

● It is usually much more difficult to determine the average case time 
complexity of an algorithm. This is the average number of 
operations an algorithm uses to solve a problem over all inputs of 
a particular size.



Complexity Analysis of Algorithms
     Example: Describe the time complexity of the algorithm    for finding   the 

maximum element in a  finite sequence.

    

    

                          

          

procedure max(a1, a2, …., an: integers)
    max := a1
    for i := 2 to n
         if max < ai then max := ai
    return max{max is the largest element}
    

 Solution: Count the number of comparisons.
•  The max < ai comparison is made n − 2 times.
•   Each time i is incremented, a test is made to see if i ≤ n.
•   One last comparison determines that i > n.               
•   Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

 Hence, the time complexity of the algorithm is  Θ(n).



Worst-Case Complexity of Linear 
Search
   Example: Determine the time complexity of the linear 

search algorithm. procedure linear search(x:integer, 
               a1, a2, …,an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)
      i := i + 1
if i ≤ n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.
• At each step two comparisons are made; i ≤ n and x ≠ ai .
• To end the loop, one comparison i ≤ n is made.
• After the loop, one more i ≤ n  comparison is made. 

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1 
comparisons are made and then an additional comparison is used to 
exit the loop. So, in the worst case 2n + 2 comparisons are made.  
Hence, the complexity is Θ(n).



Average-Case Complexity of Linear 
Search
  Example: Describe the average case performance of the 

linear search algorithm. (Although usually it is very 
difficult to determine average-case complexity, it is easy for 
linear search.)

   Solution: Assume the element is in the list and that the 
possible positions are equally likely. By the argument on the 
previous slide, if x = ai , the number of comparisons is       2i + 1.

   Hence,  the average-case complexity of linear search is Θ(n). 



Worst-Case Complexity of Binary Search 
   Example: Describe the time complexity of binary 

search in terms of the number of comparisons used.
   procedure binary search(x: integer, a1,a2,…, an: increasing integers)
    i := 1 {i is the left endpoint of interval}
    j := n {j is right endpoint of interval}
    while i < j
           m := ⌊(i + j)/2⌋
           if x > am then i := m + 1
           else j := m
     if x = ai then location := i
     else location := 0
     return location{location is the subscript i of the term ai  equal to x, or 0 if x is not found} 

Solution:  Assume (for simplicity) n = 2k elements. Note that k = log n.  
•  Two comparisons are made at each stage;   i < j, and x > am .
•  At the first iteration the size of the list is 2k  and after the first iteration it is 2k-1.  Then  2k-2 
and so on until the size of the list is 21 = 2. 
•  At the last step, a comparison tells us that the size of the list is the size is 20 = 1 and the 
element is compared with the single remaining element.  
•  Hence, at most 2k + 2 = 2 log n + 2 comparisons are made. 
•  Therefore, the time complexity is Θ (log n), better than linear search. 



Worst-Case Complexity of Bubble 
Sort
   Example: What is the worst-case complexity of 

bubble sort in terms of the number of comparisons 
made? procedure bubblesort(a1,…,an: real numbers 

                            with n ≥ 2)
    for i := 1 to n− 1
        for j := 1 to n − i
             if aj >aj+1 then interchange aj and aj+1
{a1,…, an is now in increasing order}

Solution: A sequence of n−1 passes is made through the list. On each pass n − i 
comparisons are made.

The worst-case complexity of bubble sort is  Θ(n2) since                                         .
                                                                            



Worst-Case Complexity of Insertion Sort
   Example: What is the worst-case complexity of 

insertion sort in terms of the number of comparisons 
made? procedure insertion sort(a

1
,…,a

n
: 

                real numbers with n ≥ 2)
     for j := 2 to n
         i := 1
         while a

j
 > a

i
              i := i + 1
          m := a

j
          for k := 0 to j  − i − 1
               a

j-k
 := a

j-k-1
           a

i
 := m

          
    

Solution: The total number of 
comparisons are:

Therefore the complexity is Θ(n2).



Matrix Multiplication Algorithm
● The definition for matrix multiplication can be expressed 

as an algorithm; C  = A B  where C is an m    n matrix that 
is the product of the m    k matrix A and the   k    n matrix 
B.

● This algorithm carries out matrix multiplication based on 
its definition. procedure matrix multiplication(A,B: matrices)                         

    for i := 1 to m              
        for j := 1 to n
              cij := 0
               for q := 1 to k
                   cij :=  cij + aiq bqj
return C{C = [cij] is the product of A and B}



Complexity of Matrix Multiplication
   Example: How many additions of integers and 

multiplications of integers are used by the matrix 
multiplication algorithm to multiply two n    n 
matrices.

   Solution: There are n2  entries in the product. Finding 
each entry requires n multiplications and n − 1 additions. 
Hence, n3  multiplications and n2(n − 1)    additions are 
used.

    Hence, the complexity of matrix multiplication is O(n3).  



Boolean Product Algorithm
● The definition of Boolean product  of zero-one 

matrices can also be converted to an algorithm.

procedure Boolean product(A,B: zero-one matrices)                         
    for i := 1 to m
        for j := 1 to n
              cij := 0
               for q := 1 to k
                    cij  := cij  ∨ (aiq ∧ bqj)
return C{C = [cij] is the Boolean product of A and B}



Complexity of Boolean Product 
Algorithm
   Example: How many bit operations are used to find    

A ⊙ B,  where A and B are n    n zero-one matrices? 
   Solution: There are n2  entries in the A ⊙ B. A total of n 

Ors and n ANDs are used to find each entry. Hence, each 
entry takes 2n bit operations. A total of 2n3  operations are 
used.

                     Therefore the complexity is O(n3)  



Matrix-Chain Multiplication
● How should the matrix-chain  A1A2· · ·An    be computed  using the fewest 

multiplications of integers, where A1 , A2 ,    · · · , An     are m1       m2, m2      m3 , · 
· · mn      mn+1     integer matrices. Matrix multiplication is associative 
(exercise in Section 2.6).

   Example: In which order should the integer matrices A1A2A3  -  where A1   is 30    
20 , A2 20       40,  A3 40      10 - be multiplied to use the least number of 
multiplications. 

   Solution: There are two possible ways to compute A1A2A3.
● A1(A2A3): A2A3  takes 20 · 40 · 10 = 8000 multiplications. Then multiplying A1   by the 

20    10 matrix A2A3 takes 30 · 20 · 10 = 6000 multiplications. So the total number is 
8000 + 6000 = 14,000.

● (A1A2)A3: A1A2  takes 30 · 20 · 40 = 24,000 multiplications. Then multiplying the 30     
40 matrix  A1A2 by A3 takes 30 · 40 · 10 = 12,000 multiplications. So the total number is 
24,000 + 12,000 = 36,000.

    So the first method is best. An efficient algorithm for finding the best order for matrix-chain 
multiplication can be based on the algorithmic paradigm known 
as dynamic programming. (see Ex. 57 in Section 8.1)



Algorithmic Paradigms
● An algorithmic paradigm  is a a general approach based 

on a particular concept for constructing algorithms to 
solve a variety of problems. 
● Greedy algorithms were introduced in Section 3.1.
● We discuss brute-force algorithms in this section.
● We will see divide-and-conquer algorithms (Chapter 8), 

dynamic programming (Chapter 8), backtracking 
(Chapter 11), and probabilistic algorithms (Chapter 7). 
There are many other paradigms that you may see in 
later courses.



Brute-Force Algorithms
● A brute-force algorithm is solved in the most 

straightforward manner, without taking advantage of 
any ideas that can make the algorithm more efficient.

● Brute-force algorithms we have previously seen are 
sequential search, bubble sort, and insertion sort. 



Computing the Closest Pair of Points  
by Brute-Force
   Example: Construct a brute-force algorithm for 

finding the closest pair of points in a set of n points in 
the plane and provide a worst-case estimate of the 
number of arithmetic operations.

    Solution: Recall that the distance between (xi,yi) and 
(xj, yj) is                                  . A brute-force algorithm 
simply computes the distance between all pairs of 
points and picks the pair with the smallest distance.

    

Continued →

Note: There is no need to compute the square root, since the square of the 
distance between two points is smallest when the distance is smallest. 



Computing the Closest Pair of Points 
by Brute-Force
● Algorithm for finding the closest pair in a set of n points.

● The algorithm loops through n(n −1)/2 pairs of points, computes the value (xj − 
xi)2   + (yj − yi)2  and compares it with the minimum, etc. So, the algorithm uses 
Θ(n2) arithmetic and comparison operations.

● We will develop an algorithm with O(log n) worst-case complexity in Section 
8.3.

procedure closest pair((x1, y1), (x2, y2), … ,(xn, yn): xi, yi  real numbers)
min =  ∞                     
    for i := 1 to n
        for j := 1 to i
               if (xj − xi)2   + (yj − yi)2    < min
                 then   min := (xj − xi)2   + (yj − yi)2  

                                closest pair  := (xi, yi), (xj, yj)
return closest pair 



Understanding the Complexity of 
Algorithms



Understanding the Complexity of 
Algorithms

Times of more than 10100   years are indicated with an *.



Complexity of Problems
● Tractable Problem: There exists a polynomial time algorithm to 

solve this problem. These problems are said to belong to the 
Class P.

● Intractable Problem:  There does not exist a polynomial time 
algorithm to solve this problem

● Unsolvable Problem : No algorithm exists to solve this problem, 
e.g., halting problem.

● Class NP: Solution can be checked in polynomial time. But no 
polynomial time algorithm has been found for finding a 
solution to problems in this class. 

● NP Complete Class: If you find a polynomial time algorithm for 
one member of the class, it can be used to solve all the 
problems in the class.  



P Versus NP Problem
● The P versus NP problem asks whether the class  P = NP?  Are there problems 

whose solutions can be checked in polynomial time, but can not be solved in 
polynomial time?
● Note that just because no one has found a polynomial time algorithm is different 

from showing that the problem can not be solved by a polynomial time algorithm.
● If a polynomial time algorithm  for any of the problems in the NP complete 

class were found, then that algorithm could be used to obtain a polynomial 
time algorithm for every problem in the NP complete class.
● Satisfiability (in Section 1.3) is an NP complete problem. 

● It is generally believed that P≠NP since no one has been able to find a polynomial 
time algorithm for any of the problems in the NP complete class. 

● The problem of P versus NP remains one of the most famous unsolved problems in 
mathematics (including theoretical computer science). The Clay Mathematics 
Institute has offered a prize of $1,000,000 for a solution.

Stephen Cook
(Born 1939)


