3.2 Growth of Functions - Worksheet

For 1) - 3) to establish a big-O relationship, find witnesses C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.

- 1. Determine whether each of these functions is O(x).
 - (a) f(x) = 10
 - (b) f(x) = 3x + 7
 - (c) $f(x) = x^2 + x + 1$
 - (d) $f(x) = 5\log(x)$
 - (e) $f(x) = \lfloor x \rfloor$
 - (f) $f(x) = \lceil x/2 \rceil$
- 2. Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.
 - (a) $f(x) = 2x^2 + x^3 \log(x)$
 - (b) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$
 - (c) $f(x) = (x^3 + 5\log(x))/(x^4 + 1)$
- 3. Show that x^3 is $O(x^4)$ but that x^4 is not $O(x^3)$.