Handout 2.5 \& 3.1

Definition: The sets A and B have the same cardinality if and only if there is a one-toone correspondence from A to B. When A and B have the same cardinality, we write IAI $=\mid \mathrm{Bl}$.

Definition: If there is a one-to-one function from A to B , the cardinality of A is less than or the same as the cardinality of B and we write $|\mathrm{A}| \leq \mid \mathrm{BI}$. Moreover, when $|\mathrm{A}| \leq \mid$ Bl and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write $|\mathrm{A}|<|\mathrm{B}|$.

Definition: A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable. When an infinite set S is countable, we denote the cardinality of S by

$$
\aleph_{0}
$$

where κ is aleph, the first letter of the Hebrew alphabet). We write

$$
|S|=\mathbf{N}_{0}
$$

and say that S has cardinality "aleph null."
Theorem: If A and B are countable sets, then $A \cup B$ is also countable.
SCHRÖDER-BERNSTEIN THEOREM If A and B are sets with $|\mathrm{A}| \leq|\mathrm{B}|$ and $|\mathrm{B}| \leq \mid$ $A \mid$, then $|A|=|B|$. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Definition: We say that a function is computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable we say it is uncomputable.

Definition: An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

```
ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.
procedure max( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{}\mathrm{ : integers)
max := a 
for }i:=2\mathrm{ to }
    if max < ai then max := a 
return max{max is the largest element}
```

```
ALGORITHM 2 The Linear Search Algorithm.
procedure linear search(x: integer, , a1, , a, ,\ldots, an: distinct integers)
i:=1
while ( }i\leqn\mathrm{ and }x\not=\mp@subsup{a}{i}{}\mathrm{ )
    i:=i+1
if i\leqn then location:= i
else location := 0
return location{location is the subscript of the term that equals }x\mathrm{ , or is 0 if }x\mathrm{ is not found}
```


ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: increasing integers)
$i:=1\{i$ is left endpoint of search interval $\}$
$j:=n\{j$ is right endpoint of search interval $\}$
while $i<j$
$m:=\lfloor(i+j) / 2\rfloor$
if $x>a_{m}$ then $i:=m+1$
else $j:=m$
if $x=a_{i}$ then location $:=i$
else location $:=0$
return location\{location is the subscript i of the term a_{i} equal to x, or 0 if x is not found\}

```
ALGORITHM 5 The Insertion Sort.
procedure insertion \(\operatorname{sort}\left(a_{1}, a_{2}, \ldots, a_{n}\right.\) : real numbers with \(n \geq 2\) )
for \(j:=2\) to \(n\)
    \(i:=1\)
    while \(a_{j}>a_{i}\)
            \(i:=i+1\)
        \(m:=a_{j}\)
        for \(k:=0\) to \(j-i-1\)
            \(a_{j-k}:=a_{j-k-1}\)
        \(a_{i}:=m\)
\(\left\{a_{1}, \ldots, a_{n}\right.\) is in increasing order \(\}\)
```

Lemma: If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies using the fewest coins possible has at most two dimes, at most one nickel,
at most four pennies, and cannot have two dimes and a nickel. The amount of change in dimes, nickels, and pennies cannot exceed 24 cents.

Theorem: The greedy algorithm (Algorithm 6) produces change using the fewest coins possible.

```
ALGORITHM 7 Greedy Algorithm for Scheduling Talks.
procedure schedule(s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\cdots\leq\mp@subsup{s}{n}{}\mathrm{ : start times of talks,
    e
sort talks by finish time and reorder so that e}\mp@subsup{e}{1}{}\leq\mp@subsup{e}{2}{}\leq\ldots\leq\mp@subsup{e}{n}{
S:=\emptyset
for }j:=1\mathrm{ to }
    if talk j is compatible with S then
        S:=S\cup{talk j}
return S{S is the set of talks scheduled}
```


ALGORITHM 6 Greedy Change-Making Algorithm.

procedure change $\left(c_{1}, c_{2}, \ldots, c_{r}\right.$: values of denominations of coins, where
$c_{1}>c_{2}>\cdots>c_{r} ; n:$ a positive integer)
for $i:=1$ to r
$d_{i}:=0\left\{d_{i}\right.$ counts the coins of denomination c_{i} used $\}$
while $n \geq c_{i}$
$d_{i}:=d_{i}+1$ \{add a coin of denomination $\left.c_{i}\right\}$
$n:=n-c_{i}$
$\left\{d_{i}\right.$ is the number of coins of denomination c_{i} in the change for $\left.i=1,2, \ldots, r\right\}$

FIGURE 2 Showing that the Halting Problem is Unsolvable.

