Handout 2.5 & 3.1

Definition: The sets A and B have the same cardinality if and only if there is a one-to-
one correspondence from A to B. When A and B have the same cardinality, we write |Al
= IBI.

Definition: If there is a one-to-one function from A to B, the cardinality of A is less
than or the same as the cardinality of B and we write |Al < IBl. Moreover, when |Al < |
Bl and A and B have different cardinality, we say that the cardinality of A is less than
the cardinality of B and we write |Al < IBI.

Definition: A set that is either finite or has the same cardinality as the set of positive
integers is called countable. A set that is not countable is called uncountable. When an
infinite set S is countable, we denote the cardinality of S by

N

0

where N is aleph, the first letter of the Hebrew alphabet). We write
N

and say that S has cardinality “aleph null.”
Theorem: If A and B are countable sets, then A U B is also countable.

If A and B are sets with |Al <IBl and IBl < |
Al, then |Al = IBI. In other words, if there are one-to-one functions f from Ato B and g
from B to A, then there is a one-to-one correspondence between A and B.

Definition: We say that a function is computable if there is a computer program in some
programming language that finds the values of this function. If a function is not
computable we say it is uncomputable.

Definition: An algorithm is a finite sequence of precise instructions for performing a
computation or for solving a problem.

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max(ay,as, ..., a,: integers)
max = a
fori:=2ton
if max < a; then max := a;
return max {max is the largest element}

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer,ay, az, .. ., ay: distinct integers)
i:=1
while (i <n and x # q;)
i:=1i+1
if i < n then location =i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}

ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x: integer,aj, as, . .., a,: increasing integers)
i := 1{i is left endpoint of search interval}
J :=n {Jj is right endpoint of search interval}
while i < j
m = (i +j)/2]
if x > a, theni :=m+ 1
else j :=m
if x = a; then location := i
else location := 0
return location{location is the subscript i of the term a; equal to x, or O if x is not found}

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(ay, as, . .., a,: real numbers withn > 2)
for j :=2ton
i:=1
while a; > a;
i=i+1
m .= (lj
fork:=0toj —i—1
aj_fi=aj |
ai ;==m
{ay, ...,a, is in increasing order}

Lemma: If n is a positive integer, then n cents in change using quarters, dimes, nickels,
and pennies using the fewest coins possible has at most two dimes, at most one nickel,

at most four pennies, and cannot have two dimes and a nickel. The amount of change in
dimes, nickels, and pennies cannot exceed 24 cents.

Theorem: The greedy algorithm (Algorithm 6) produces change using the fewest coins
possible.

ALGORITHM 7 Greedy Algorithm for Scheduling Talks.

procedure schedule(s; < s < --- < s, start times of talks,
e] < ey <--- < e, ending times of talks)

sort talks by finish time and reorder so thate; < ey < ... < ¢,
S:=0
for j:=1ton

if talk j is compatible with S then

S := S U{talk j}

return S{S is the set of talks scheduled}

ALGORITHM 6 Greedy Change-Making Algorithm.

procedure change(cy, c2, ..., ¢,: values of denominations of coins, where
c] > ¢y > --- > ¢y N apositive integer)
fori:=1tor
d; := 0 {d; counts the coins of denomination ¢; used}
while n > ¢;
d; '=d; + 1 {add a coin of denomination c¢; }
n:=n-—c¢
{d; is the number of coins of denomination ¢; in the change fori =1,2,..., r}

If H(P, P) = “halts.”

P as program then loop forever
Tnont *| Program Outout Program | — 5
npu utpu
i H(P.I) Put | K(P)
Program P H(P, P)
P as input B If H(P, P) = “loops forever,”
then halt

FIGURE 2 Showing that the Halting Problem is Unsolvable.

