- Definition: A sequence is a function from a subset of the set of integers (usually either the set $\{0,1,2, \ldots\}$ or the set $\{1,2,3, \ldots\})$ to a set S.We use the notation a_{n} to denote the image of the integer n . We call a_{n} a term of the sequence.
- Definition: A geometric progression is a sequence of the form $a, a r, \mathrm{ar}^{2}, \ldots, a{ }^{\mathrm{n}}, \ldots$ where the initial term a and the common ratio r are real numbers.
- Definition: An arithmetic progression is a sequence of the form $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots, \mathrm{a}$ + nd, . .
- Definition: A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, a_{0}, a_{1}, \ldots, a_{n-1}, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively define a sequence.
- Definition: he Fibonacci sequence, $\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots$, is defined by the initial conditions $\mathrm{f}_{0}=0, \mathrm{f}_{1}=1$, and the recurrence relation

$$
\mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2} \text { for } \mathrm{n}=2,3,4, \ldots .
$$

TABLE 1 Some Useful Sequences.

nth Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

THEOREM 1 If a and r are real numbers and $r \neq 0$, then

$$
\sum_{j=0}^{n} a r^{j}=\left\{\begin{array}{cc}
\frac{a r^{n+1}-a}{r-1} & \text { if } r \neq 1 \\
(n+1) a & \text { if } r=1
\end{array}\right.
$$

TABLE 2 Some Useful Summation Formulae.	
Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$

