Handout 2.4

• Definition: A *sequence* is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1,2,3,...\}$) to a set S.We use the notation a_n to denote the image of the integer n. We call a_n a *term* of the sequence.

• Definition: A *geometric progression* is a sequence of the form a, ar, $ar^2, ..., ar^n, ...$ where the *initial term* a and the *common ratio* r are real numbers.

- Definition: An *arithmetic progression* is a sequence of the form a, a + d, a + 2d, ..., a + nd, ...
- Definition: A *recurrence relation* for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0, a_1, \ldots , a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation. (A recurrence relation is said to *recursively define* a sequence.
- Definition: he *Fibonacci sequence*, f_0, f_1, f_2, \ldots , is defined by the initial conditions $f_0 = 0, f_1 = 1$, and the recurrence relation

TABLE 1 Some Useful Sequences.		
nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3^n	$3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, \ldots$	
n!	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \ldots$	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

$$f_n = f_{n-1} + f_{n-2}$$
 for $n = 2,3,4,...$

THEOREM 1

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	