Handout 2.3

- Definition: Let A and B be nonempty sets. A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.
- Given a function $f: A \rightarrow B$:
- We say f maps A to B or f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.
- If $f(a)=b$,
-
- then b is called the image of a under f.
- a is called the pre-image of b.
- The range of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(A)$.
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.
- Definition: A function f is said to be one-to-one, or injective, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be an injection if it is one-to-one.
- Definition: A function f from A to B is called onto or surjective, if and only if for every element b in B, there is an element a in A with $\mathrm{f}(\mathrm{a})=\mathrm{b}$. A function f is called a surjection if it is onto.
- Definition: A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).
$f^{-1} \quad \bullet$ Definition: Let f be a bijection from $\quad f^{-1}(y)=x$ iff $f(x)=y \quad A$ to B. Then the inverse of f, denoted \quad, is the $\quad{ }_{f \circ g}$ function from B to A defined as
$1 \circ g(x)=\int(g(x))$
- Definition: Let $f: B \rightarrow C, g: \quad f(x)=\lfloor x\rfloor \quad A \rightarrow B$. The composition off with g, denoted is the function from A to $C \quad$ defined by
- The floor function, denoted is the largest integer less than or equal to x.
- The ceiling function, denoted is the smallest integer greater than or equal to x.

