2.3 Sets - Worksheet

- 1. Determine whether f is a function from \mathbb{Z} to \mathbb{R} if
 - (a) $f(n) = \pm n$ (b) $f(n) = \sqrt{n^2 + 1}$ (c) $f(n) = \frac{1}{n^2 - 4}$
- 2. Find these values
 - (a) [1.1](b) [-0.1](c) [-0.1](d) $\left|\frac{1}{2} + \left[\frac{1}{2}\right]\right|$
- 3. Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.
 - (a) f(n) = n 1(b) $f(n) = n^2 + 1$ (c) $f(n) = n^3$ (d) $f(n) = \left\lceil \frac{n}{2} \right\rceil$
- 4. Determine whether $f: Z \times Z \to Z$ is onto if
 - (a) f(m,n) = 2m n
 - (b) $f(m,n) = m^2 n^2$
- 5. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .
 - (a) f(x) = -3x + 4(b) $f(x) = -3x^2 + 7$ (c) $f(x) = \frac{x+1}{x+2}$ (d) $f(x) = x^5 + 1$
- 6. Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 1$ and g(x) = x + 2 are functions from \mathbb{R} to \mathbb{R} .
- 7. Show that the function f(x) = ax + b from \mathbb{R} to \mathbb{R} is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f, f^{-1} , and compute $f^{-1}(1)$.
- 8. How many bytes are required to encode n bits of data where n equals

Page 2 $\,$

(b) 10?

(c) 500?(d) 3000?

(a) 4?