2.3 Sets - Worksheet

1. Determine whether f is a function from \mathbb{Z} to \mathbb{R} if
(a) $f(n)= \pm n$
(b) $f(n)=\sqrt{n^{2}+1}$
(c) $f(n)=\frac{1}{n^{2}-4}$
2. Find these values
(a) $\lceil 1.1\rceil$
(b) $\lceil-0.1\rceil$
(c) $\lfloor-0.1\rfloor$
(d) $\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor$
3. Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.
(a) $f(n)=n-1$
(b) $f(n)=n^{2}+1$
(c) $f(n)=n^{3}$
(d) $f(n)=\left\lceil\frac{n}{2}\right\rceil$
4. Determine whether $f: Z \times Z \rightarrow Z$ is onto if
(a) $f(m, n)=2 m-n$
(b) $f(m, n)=m^{2}-n^{2}$
5. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R}.
(a) $f(x)=-3 x+4$
(b) $f(x)=-3 x^{2}+7$
(c) $f(x)=\frac{x+1}{x+2}$
(d) $f(x)=x^{5}+1$
6. Find $f \circ g$ and $g \circ f$ where $f(x)=x^{2}+1$ and $g(x)=x+2$ are functions from \mathbb{R} to \mathbb{R}.
7. Show that the function $f(x)=a x+b$ from \mathbb{R} to \mathbb{R} is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f, f^{-1}, and compute $f^{-1}(1)$.
8. How many bytes are required to encode n bits of data where n equals
(a) 4 ?
(b) 10 ?
(c) 500 ?
(d) 3000 ?

Page 2

