Handout for 1.4 &1.5

- Predicate logic uses the following new features:
 - Variables: *x*, *y*, *z*
 - Predicates: P(x), M(x)
 - Quantifiers
- *Propositional functions* are a generalization of propositions.
 - They contain variables and a predicate, e.g., P(x)
 - Variables can be replaced by elements from their *domain*.
 - Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier, as we will see later).
 - We need quantifiers to express the meaning of English words including all and some
- The two most important quantifiers are:
 - *Universal Quantifier, "*For all," symbol: ∀
 - *Existential Quantifier*, "There exists," symbol: ∃
- The quantifiers \forall and \exists have higher precedence than all the logical operators.

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

- Statements involving predicates and quantifiers are *logically equivalent* if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expression

Statement	When True?	When False
$ \forall x \forall y P(x, y) \\ \forall y \forall x P(x, y) $	P(x,y) is true for every pair x,y .	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which $P(x,y)$ is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y) \end{cases}$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y