Mathematics 1375/D572, Spring 2019
Instructor: Suman Ganguli

Exam \#3

Tuesday, April 30
\qquad

1. (5 points) Solve the following inequality algebraically, and write the solution set in interval notation:

$$
|3 x-2|>4
$$

Solution:

$$
\begin{aligned}
& 3 x-2<-4 \quad \text { or } \quad 3 x-2>4 \\
& 3 x<-2 \quad \text { or } \quad 3 x>6 \\
& x<-2 / 3 \quad \text { or } \quad x>2 \\
& (-\infty,-2 / 3) \cup(2, \infty)
\end{aligned}
$$

Extra credit (up to 3 points): Check your solution by sketching the graphs of $y=|3 x-2|$ and $y=4$ (you can use Desmos as a guide). Label the points where the two graphs intersect with their coordinates, and indicate or explain how this gives the solution set of the inequality.

2. (5 points) Write down and simplify the following for $f(x)=2 x^{2}+x+14$:
(a) $f(x+h)=$

Solution: $f(x+h)=2(x+h)^{2}+(x+h)+14=2\left(x^{2}+2 x h+h^{2}\right)+x+h+14=2 x^{2}+4 x h+2 h^{2}+x+h+14$
(b) $f(x+h)-f(x)=$

Solution: $f(x+h)-f(x)=\left(2 x^{2}+4 x h+2 h^{2}+x+h+14\right)-\left(2 x^{2}+x+14\right)=4 x h+2 h^{2}+h$
(c) $\frac{f(x+h)-f(x)}{h}=$

Solution: $\frac{f(x+h)-f(x)}{h}=\frac{4 x h+2 h^{2}+h}{h}=4 x+2 h+1$
3. (10 points) Evaluate the following logarithms:
(a) $\log _{3}(81)=$

Solution: $\log _{3}(81)=4\left(\right.$ since $\left.3^{4}=81\right)$
(b) $\ln \left(e^{3}\right)=$

Solution: $\ln \left(e^{3}\right)=3$
(c) $\log _{4}(0.25)=$

Solution: $\log _{4}(0.25)=-1\left(\right.$ since $\left.4^{-1}=\frac{1}{4}=0.25\right)$
4. (10 points) Use the properties of logarithmic functions to write the following expressions in terms of $\ln (x)$ and $\ln (y)$:
(a) $\ln \left(\sqrt{\frac{y}{x}}\right)=$

Solution: $\ln \left(\sqrt{\frac{y}{x}}\right)=\ln \left(\frac{\sqrt{y}}{\sqrt{x}}\right)=\ln (\sqrt{y})-\ln (\sqrt{x})=\frac{1}{2} \ln (y)-\frac{1}{2} \ln (x)$ or $\ln \left(\left(\frac{y}{x}\right)^{1 / 2}\right)=\frac{1}{2}(\ln (y)-\ln (x))=\frac{1}{2} \ln (y)-\frac{1}{2} \ln (x)$
(b) $\ln \left(x^{3} \sqrt{y^{7}}\right)=$

Solution: $\ln \left(x^{3} \sqrt{y^{7}}\right)=\ln \left(x^{3}\right)+\ln \left(y^{7 / 2}\right)=3 \ln (x)+\frac{7}{2} \ln (y)$
5. (5 points) Solve the following exponential equation for x :

$$
3^{x}=10
$$

First solve for x algebraically, expressing the value of x in terms of logarithms. Then use a calculator to give a decimal approximation for x (to 2 decimal places).
(Hint: start by taking the logarithm of both sides of the equation, and then use the properties of logarithms to simplify.)

Solution: $\ln 3^{x}=\ln 10 \Longrightarrow x \ln 3=\ln 10 \Longrightarrow x=\frac{\ln 10}{\ln 3} \approx 2.10$
or $\log 3^{x}=\log 10 \Longrightarrow x \log 3=1 \Longrightarrow x=\frac{1}{\log 3} \approx 2.10$
6. (5 points) Consider the functions $f(x)=b^{x}$ and $g(x)=\log _{b} x$ for some fixed constant $b>1$.
(a) What is the relationship between these two functions (in particular, how is $g(x)$ defined in terms of $f(x)$?

Solution: The logarithmic function $g(x)=\log _{b} x$ is defined as the inverse of the exponential function $f(x)=b^{x}$
(b) Sketch rough graphs of $y=f(x)$ and $y=g(x)$ on the coordinate axes below. Label the x - and y-intercepts on each graph with their coordinates.

7. (10 points) Consider the function $f(x)=\log (2 x-3)$.
(Note: For (a)-(c), you can use the graph of $f(x)$ to check your answers but you must show how you get the solutions algebraically for full credit.)
(a) What is the domain of $f(x)$?

Solution: The domain consists of all x such that $2 x-3>0$. Thus the domain is $x>1.5$, or $(1.5, \infty)$.
(b) What is the x-intercept of $f(x)$?

Solution: To find the x-intercept, solve $f(x)=0$:

$$
\log (2 x-3)=0 \Longleftrightarrow 2 x-3=10^{0}=1 \Longleftrightarrow x=2
$$

So the only x-intercept is the point $(2,0)$.
(c) What is the vertical asymptote of $f(x)$?

Solution: The vertical asymptote occurs when $2 x-3=0$, i.e., the vertical line $x=1.5$.
(d) Sketch the graph of $f(x)$. Label the x-intercept and the vertical asymptote.

