Quiz \#6
Friday, March 29

Name: \qquad

Consider the rational function $f(x)=\frac{6 x-18}{2 x-3}$.

1. (2 points) What is the domain of $f(x)$? Show your calculations, and write the solution in interval notation:

Solution: $2 x-3=0$ for $x=3 / 2$. Hence the domain of f is $\mathbb{R}-\{3 / 2\}=(-\infty, 3 / 2) \cup(3 / 2, \infty)$
2. (2 points) Algebraically solve for the the x - and y-intercepts of the graph of $f(x)$. Again, show the necessary calculations, and write the coordinates of the intercepts in (x, y) form:

Solution:

The x-intercept occurs when $6 x-18=0$, hence at $x=3$, i.e., at the point $(3,0)$
The y-intercept occurs at $f(0)=\frac{-18}{-3}=6$, i.e., at the point $(0,6)$
3. (1 point) What is the vertical asymptote of this function?

Solution: The vertical asymptote occurs when $2 x-3=0$, i.e., the vertical line $x=3 / 2$.
4. (3 points) Sketch a complete graph of the function. You can use Desmos or a graphing calculator for help. But indicate and label on your graph below the x - and y-intercepts, and the vertical asymptote (draw the vertical asymptote as a dashed line, and label it with its equation).

5. (2 points) Use the graph to solve the following inequality: circle the parts of the graph corresponding to the solution set of the inequality, and write down the solution set in interval notation.

$$
\frac{6 x-18}{2 x-3} \geq 0
$$

