Mathematics 1375/D572, Spring 2019
Instructor: Suman Ganguli

Exam \#1

Friday, February 22
\qquad

1. (10 points) Shown is the graph of the function $f(x)=\frac{x-2}{x^{2}+2 x-3}$:

(a) Compute the following values of f (show your calculations), and label the corresponding points with their coordinates on the graph above:

Solution:

- $f(0)=\frac{0-2}{0+0-3}=\frac{2}{3}$
- $f(2)=\frac{2-2}{4+4-3}=0$
- $f(-4)=\frac{-4-2}{16-8-3}=-\frac{6}{5}$
(b) What is the domain of f ? For full credit, write the solution in interval notation. (Hint: Start by factoring the denominator.)

Solution: Since the denominator of f is $x^{2}+2 x-3=(x+3)(x-1)$, the function is undefined for $x=-3$ and $x=1$. Hence, the domain of f is

$$
(-\infty,-3) \cup(-3,1) \cup(1, \infty)
$$

2. (10 points) Solve each of the following inequalities algebraically, and

- write the solution set in interval notation
- graph the solution set on the given number line
(a) $|3-2 x|>7$

Solution:

$$
\begin{aligned}
& 3-2 x<-7 \quad \text { or } \quad 3-2 x>7 \\
& -2<-10 \quad \text { or } \quad-2 x>4 \\
& x>5 \quad \text { or } \quad x<-2 \\
& (-\infty,-2) \cup(5, \infty)
\end{aligned}
$$

(b) $|4 x-3| \leq 5$

Solution:

$$
\begin{aligned}
& -5 \leq 4 x-3 \leq 5 \\
& -2 \leq 4 x \leq 8 \\
& -\frac{1}{2} \leq x \leq 2 \\
& {\left[-\frac{1}{2}, 2\right]}
\end{aligned}
$$

3. (10 points) Write down and simplify the following for $g(x)=x^{2}-7 x-20$:
(a) $g(x+h)=$

Solution: $g(x+h)=(x+h)^{2}-7(x+h)-20=x^{2}+2 x h+h^{2}-7 x-7 h-20$
(b) $g(x+h)-g(x)=$

Solution: $g(x+h)-g(x)=\left(x^{2}+2 x h+h^{2}-7 x-7 h-20\right)-\left(x^{2}-7 x-20\right)=2 x h+h^{2}-7 h$
(c) $\frac{g(x+h)-g(x)}{h}=$

Solution: $\frac{f(x+h)-f(x)}{h}=\frac{2 x h+h^{2}-7 h}{h}=2 x+h-7$
4. (10 points) Let $f(x)=4 x-1$ and $g(x)=\sqrt{x}$. Write down and simplify expressions for the following functions, and find their respective domains.
(a) $\left(\frac{f}{g}\right)(x)=$
domain of $\left(\frac{f}{g}\right)$:
Solution: $\left(\frac{f}{g}\right)(x)=\frac{4 x-1}{\sqrt{x}} \quad$ domain: $(0, \infty)$
(b) $\left(\frac{g}{f}\right)(x)=$
domain of $\left(\frac{g}{f}\right)$:
Solution: $\left(\frac{g}{f}\right)(x)=\frac{\sqrt{x}}{4 x-1} \quad$ domain: $[0,1 / 4) \cup(1 / 4, \infty)$
(c) $(f \circ g)(x)=$
domain of $(f \circ g)$:
Solution: $(f \circ g)(x)=f(g(x))=f(\sqrt{x})=4 \sqrt{x}-1 \quad$ domain: $[0, \infty)$
(d) $(g \circ f)(x)=$
domain of $(g \circ f)$:
Solution: $(g \circ f)(x)=g(f(x))=g(4 x-1)=\sqrt{4 x-1} \quad$ domain: $[1 / 4, \infty)$
5. (10 points) Find the inverse $f^{-1}(x)$ of the function $f(x)=\frac{4}{x-3}$
(Recall: to find $f^{-1}(x)$, start by setting up the equation $y=f(x)$ and then solve for x in terms of y.)

Solution: We set up the equation $y=f(x)$:

$$
y=\frac{4}{x-3}
$$

and solve for x in terms of y :

$$
y(x-3)=4 \Longrightarrow x-3=\frac{4}{y} \Longrightarrow x=\frac{4}{y}+3
$$

Swapping x and y, we get $y=\frac{4}{x}+3$, and so:

$$
f^{-1}(x)=\frac{4}{x}+3
$$

Check: $f\left(f^{-1}(x)\right)=\frac{4}{\frac{4}{x}+3-3}=\frac{4}{\frac{4}{x}}=x$

