Mathematics 1375/D572, Spring 2019
Instructor: Suman Ganguli
\qquad

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 1 | 3 | 2 | 2 | 2 | 10 |
| Score: | | | | | | |

> In order to receive full credit, you must show all your work and simplify your answers.

Shown below is the graph of the cubic polynomial $p(x)=x^{3}+2 x^{2}-10 x-20$:

1. (1 point) From the graph, it seems that $x=-2$ is a root of $p(x)$. Verify that this is the case (i.e., show that $p(-2)=0)$.
2. (3 points) Use the root $c=-2$ to factor the polynomial $p(x)$:
(a) Since we know from $\# 1$ that $c=-2$ is a root of p, we know $(x-c)=(x+2)$ is a factor of $p(x)$. Use long division to compute $\frac{p(x)}{x+2}$:

$$
x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } - 1 0 x - 2 0 }
$$

(b) Fill in the blank with your result from (a) to get the factorization of $p(x)$:

$$
p(x)=x^{3}+2 x^{2}-10 x-20=(x+2)(
$$

\qquad
3. (2 points) Use the factorization from $\# 2(\mathrm{~b})$ to algebraically solve for the other two roots of $p(x)$ in radical form (i.e., solve for the roots of the quadratic polynomial that results from factoring $x+2$ out of $p(x)$).
4. (2 points) (a) Write down the coordinates of the $3 x$-intercepts of the graph of $p(x)$, corresponding to the 3 roots:
(b) Algebraically calculate the y-intercept of the graph $y=p(x)$ and write down the coordinates of the y-intercept:
5. (2 points) Finally, label the x-intercepts and the y-intercept on the graph with their coordinates (leave the x-coordinates corresponding to the 2 roots you found in $\# 3$ in radical form, i.e., in terms of square roots).

Extra credit (up to 3pts): Recreate the graph of $p(x)$ in Desmos, and then click on x-intercepts, the y-intercept, and also the local maximum and the local minimum (so that Desmos displays the coordinates of these 6 points).
Either (a) print out your graph (click on the "Share" button in the upper-right of the Desmos screen) and hand in your printout with this quiz; or (b) download or screenshot your graph to an image file, and email it to me at sganguli@citytech.cuny.edu (with subject line "MAT1375 Quiz 5 graph")

