Quiz \#4
Friday, March 15
\qquad

Let $f(x)=x^{2}-2 x-3$.

1. (2 points) Find the roots of $f(x)$.
(Hint: either factor $f(x)$ or use the quadratic formula.)

Solution: To find the roots, we solve the equation $f(x)=0$:
By factoring: $f(x)=x^{2}-2 x-3=(x-3)(x+1)$, so $f(x)=0$ for $x=3$ and $x=-1$.
By the quadratic formula:

$$
x=\frac{2 \pm \sqrt{4-4(-3)}}{2}=\frac{2 \pm \sqrt{16)}}{2}=\frac{2 \pm 4}{2}
$$

and so again we see that the roots of $f(x)$ are $x=3$ and $x=-1$.
2. (5 points) Sketch the graph of $f(x)$, labelling the x-intercepts, the y-intercept, and the vertex with their coordinates:

Solution: From $\# 1$, we know the x-intercepts occur at $(-1,0)$ and $(3,0)$.
Since $f(0)=0^{2}-2(0)-3=-3$, the y-intercepts occurs at $(0,-3)$.
From the vertex formula, the x-coordinate of the vertex is at $x=-\frac{b}{2 a}=-\frac{-2}{2}=1$ and so the y-coordinate of the vertex is $f(1)=1^{2}-2(1)-3=1-2-3=-4$. Thus, the vertex of the parabola occurs at $(1,-4)$.

3. (3 points) Use the graph to solve the following inequality; express the solution in interval notation:

$$
x^{2}-2 x-3 \geq 0
$$

Solution: From the graph (or really just from the fact that we know the graph of $y=x^{2}-2 x-3$ is an parabola opening upwards, with x-intercepts at $x=3$ and $x=-1$), we see that the solution set of $x^{2}-2 x-3 \geq 0$ is

$$
(-\infty,-1] \cup[3, \infty)
$$

