Handout - Worksheet 4.5 & 4.6 - Applications of Congruences and Cryptography

Hashing Functions: A hashing function h assigns memory location h(k) to the record that has k as its key. One of the most common hashing functions is the function

$$h(k) = k \mod m$$

where m is the number of available memory locations.

Pseudorandom Numbers: The most commonly used procedure for generating pseudorandom numbers is the linear congruential method.

We choose four integers: the **modulus** m, **multiplier** a, **increment** c, and **seed** x_0 , with $0 \le a < m$, and $0 \le x_0 < m$. We generate a sequence of pseudorandom numbers x_n , with $0 \le x_n < m$ for all n, by successively using the recursively defined function $x_{n+1} = (ax_n + c) \mod m$.

Many computer experiments require the generation of pseudorandom numbers between 0 and 1. To generate such numbers, we divide numbers generated with a linear congruential generator by the modulus: that is, we use the numbers x_n/m .

A **cryptosystem** is a five-tuple (P, C, K, E, D), where P is the set of plaintext strings, C is the set of ciphertext strings, K is the keyspace (the set of all possible keys), E is the set of encryption functions, and D is the set of decryption functions. We denote by E_k the encryption function in E corresponding to the key E_k and E_k the decryption function in E_k that decrypts ciphertext that was encrypted using E_k , that is E_k is E_k for all plaintext strings E_k .

- 1. Which memory locations are assigned by the hashing function $h(k) = k \mod 101$ to the records of insurance company customers with these Social Security numbers?
 - (a) 104578690
 - (b) 432222187
- 2. What sequence of pseudorandom numbers is generated using the linear congruential generator $x_{n+1} = (4x_n + 1) \mod 7$ with seed $x_0 = 3$?
- 3. Encrypt the message STOP POLLUTION by translating the letters into numbers, applying the encryption function $f(p) = (p+4) \mod 26$, and then translating the numbers back into letters.
- 4. Decrypt this message encrypted using the shift cipher $f(p) = (p+10) \mod 26$.

CEBBOXNOBXYG