Handout 4.4

THEOREM 1

If a and m are relatively prime integers and m>1, then an inverse of a modulo m exists. Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer \overline{a} less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to \overline{a} modulo m.)

THEOREM 2

THE CHINESE REMAINDER THEOREM Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

```
x \equiv a_1 \pmod{m_1},
x \equiv a_2 \pmod{m_2},
\vdots
\vdots
x \equiv a_n \pmod{m_n}
```

has a unique solution modulo $m = m_1 m_2 \cdots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

THEOREM 3

FERMAT'S LITTLE THEOREM If p is prime and a is an integer not divisible by p, then

```
a^{p-1} \equiv 1 \pmod{p}.
```

Furthermore, for every integer a we have

$$a^p \equiv a \pmod{p}$$
.

DEFINITION 1

Let b be a positive integer. If n is a composite positive integer, and $b^{n-1} \equiv 1 \pmod{n}$, then n is called a *pseudoprime to the base b*.

DEFINITION 2

A composite integer n that satisfies the congruence $b^{n-1} \equiv 1 \pmod{n}$ for all positive integers b with $\gcd(b,n)=1$ is called a *Carmichael number*. (These numbers are named after Robert Carmichael, who studied them in the early twentieth century.)

DEFINITION 3

A *primitive root* modulo a prime p is an integer r in \mathbb{Z}_p such that every nonzero element of \mathbb{Z}_p is a power of r.

DEFINITION 4

Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and p-1 inclusive. If $r^e \mod p = a$ and $0 \le e \le p-1$, we say that e is the *discrete logarithm* of a modulo p to the base r and we write $\log_r a = e$ (where the prime p is understood).