Worksheet 4.1 \& 4.2 - Divisibility and Modular Arithmetic and Integer Representations of Algorithms

1. What are the quotient and remainder when
(a) 44 is divided by 8 ?
(b) 777 is divided by 21 ?
(c) -123 is divided by 19 ?
(d) -1 is divided by 23 ?
(e) -2002 is divided by 87 ?
(f) 0 is divided by 17 ?
(g) $1,234,567$ is divided by 1001 ?
(h) -100 is divided by 101 ?
2. Let m be a positive integer. Show that $a \bmod m=b \bmod m$ if $a \equiv b(\bmod m)$.
3. Evaluate these quantities.
(a) $-17 \bmod 2$
(b) $144 \bmod 7$
(c) $-101 \bmod 13$
(d) $199 \bmod 19$
4. Decide whether each of these integers is congruent to 3 modulo 7 .
(a) 37
(b) 66
(c) -17
(d) -67
5. Find each of these values.
(a) $(177 \bmod 31+270 \bmod 31) \bmod 31$
(b) $(177 \bmod 31 \times 270 \bmod 31) \bmod 31$
6. Convert the decimal expansion of 100632 to a binary expansion.
7. Convert the binary expansion of each of these integers to a decimal expansion.
(a) $(11011)_{2}$
(b) $(1010110101)_{2}$
8. Convert the octal and hexadecimal expansion of each of these integers to a binary expansion.
(a) $(572)_{8}$
(b) $(1604)_{8}$
(c) $(80 E)_{16}$
(d) $(135 A B)_{16}$
