DEFINITION 1

Handout 4.1 & 4.2

If @ and b are integers with a # 0, we say that a divides b if there is an integer ¢ such that
b = ac, or equivalently, if £ is an integer. When a divides b we say that a is a factor or divisor
of b, and that b is a multiple of a. The notation a | b denotes that a divides b. We write a } b

when a does not divide 5.

THEOREM 1 Let a, b, and ¢ be integers, where a # 0. Then

COROLLARY 1

DEFINITION 2

THEOREM 2

DEFINITION 3

THEOREM 3

(i) ifa |banda | c, thena | (b+c);
(i) if @ | b, then a | be for all integers c;
(#if) ifa | band b | ¢, thena | c.

If a, b, and ¢ are integers, where @ # 0, such thata | band a | ¢, thena | mb + nc whenever
m and n are integers.

In the equality given in the division algorithm, d is called the divisor, a is called the dividend,
q is called the quotient, and r is called the remainder. This notation is used to express the

quotient and remainder:

g=adivd, r=amodd.

THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then there
are unique integers g and r, with 0 < r < d, such thata = dq + r.

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if
m divides @ — b. We use the notation @ = b (mod m) to indicate that ¢ is congruent to
b modulo m. We say that @ = b (mod m) is a congruence and that m is its modulus (plural
moduli). If @ and b are not congruent modulo m, we write a # b (mod m).

Let @ and b be integers, and let m be a positive integer. Then ¢ = b (mod m) if and only
if « mod m = b mod m.

THEOREM 4 Let m be a positive integer. The integers a and b are congruent modulo m if and only if there
is an integer k such that @ = b + km.

THEOREM 5 Letm be a positive integer. If @« = b (mod m) and ¢ = d (mod m), then

a+c=b+d (modm) and ac = bd (mod m).

COROLLARY 2 Letm be a positive integer and let « and b be integers. Then
(a +bh)modm = ((amod m) + (hmod m)) mod m
and

abmodm = ((a mod m)(h mod m)) mod m.

THEOREM 1 Letb be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely
in the form

n = ab* + a1 b* 1 + -+ arb + ap.

where & is a nonnegative integer, ag, ai, . .., a; are nonnegative integers less than b, and

ar # 0.

ALGORITHM 1 Constructing Base b Expansions.

procedure base b expansion(n, b: positive integers with b > 1)

g:=n

k:=0

while g # 0
ay =g mod b
q:=qdivb
k:=k+1

return (aj—1, ..., a1, aq) {(ag—1...ajap)p is the base b expansion of n}

