Handout 4.1 & 4.2

DEFINITION 1

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b, and that b is a multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \not\mid b$ when a does not divide b.

THEOREM 1

Let a, b, and c be integers, where $a \neq 0$. Then

- (i) if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- (ii) if $a \mid b$, then $a \mid bc$ for all integers c;
- (iii) if $a \mid b$ and $b \mid c$, then $a \mid c$.

COROLLARY 1

If a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

DEFINITION 2

In the equality given in the division algorithm, d is called the *divisor*, a is called the *dividend*, q is called the *quotient*, and r is called the *remainder*. This notation is used to express the quotient and remainder:

 $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$.

THEOREM 2

THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

DEFINITION 3

If a and b are integers and m is a positive integer, then a is *congruent to b modulo* m if m divides a-b. We use the notation $a\equiv b\pmod{m}$ to indicate that a is congruent to b modulo m. We say that $a\equiv b\pmod{m}$ is a **congruence** and that m is its **modulus** (plural **moduli**). If a and b are not congruent modulo m, we write $a\not\equiv b\pmod{m}$.

THEOREM 3

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

THEOREM 4

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

THEOREM 5

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$a + c \equiv b + d \pmod{m}$$
 and $ac \equiv bd \pmod{m}$.

COROLLARY 2

Let m be a positive integer and let a and b be integers. Then

$$(a+b) \operatorname{mod} m = ((a \operatorname{mod} m) + (b \operatorname{mod} m)) \operatorname{mod} m$$

and

 $ab \bmod m = ((a \bmod m)(b \bmod m)) \bmod m.$

THEOREM 1

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \neq 0$.

ALGORITHM 1 Constructing Base b Expansions.

```
procedure base b expansion(n, b: positive integers with b > 1)
```

```
q := n
```

$$k := 0$$

while $q \neq 0$

 $a_k := q \bmod b$

 $q := q \operatorname{div} b$

k := k + 1

return $(a_{k-1}, \ldots, a_1, a_0) \{(a_{k-1} \ldots a_1 a_0)_b \text{ is the base } b \text{ expansion of } n\}$