Complexity of Algorithms

Section 3.3

Section Summary

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
- How much time does this algorithm use to solve a problem?
- How much computer memory does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the time complexity of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the space complexity of the algorithm.

The Complexity of Algorithms

- In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big- O and big-Theta notation to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We ignore minor details, such as the "house keeping" aspects of the algorithm.
- We will focus on the worst-case time complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the average case time complexity of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max ( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots.,\mp@subsup{a}{\textrm{n}}{}\mathrm{ : integers)
    max := a 
    for }i:=2\mathrm{ to }
        if max< a then max := a
    return max{max is the largest element}
```

Solution: Count the number of comparisons.

- The max $<a_{i}$ comparison is made $n-2$ times.
- Each time i is incremented, a test is made to see if $\mathrm{i} \leq n$.
- One last comparison determines that $i>n$.
- Exactly $2(n-1)+1=2 n-1$ comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the linear search algorithm.

```
procedure linear search(x:integer,
    a},\mp@code{,},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{}:\mathrm{ distinct integers)
i:= 1
while (i\leqn and }x\not=\mp@subsup{a}{i}{}\mathrm{ )
    i:=i+1
if i\leqn then location:= i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}
```

Solution: Count the number of comparisons.

- At each step two comparisons are made; $i \leq n$ and $x \neq a_{i}$.
- To end the loop, one comparison $i \leq n$ is made.
- After the loop, one more $i \leq n$ comparison is made.

If $x=a_{i}, 2 i+1$ comparisons are used. If x is not on the list, $2 n+1$ comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case $2 n+2$ comparisons are made.
Hence the comnleyity ic ()(u)

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)
Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x=a_{i}$, the number of comparisons is $2 i+1$.

$$
\begin{aligned}
\frac{3+5+7+\ldots+(2 n+1)}{n} & =\frac{2(1+2+3+\ldots+n)+n}{n}= \\
& \frac{2\left[\frac{n(n+1)}{2}\right]}{n}+1=n+2
\end{aligned}
$$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.
procedure binary search $\left(x\right.$: integer, $a_{1}, a_{2}, \ldots, a_{n}$: increasing integers)
$i:=1\{i$ is the left endpoint of interval $\}$
$j:=n\{j$ is right endpoint of interval $\}$
while $i<j$
$m:=\lfloor(i+j) / 2\rfloor$
if $x>a_{m}$ then $i:=\mathrm{m}+1$ else $j:=\mathrm{m}$
if $x=a_{i}$ then location : $=i$
else location :=0
return location\{location is the subscript i of the term a_{i} equal to x, or 0 if x is not found\}
Solution: Assume (for simplicity) $n=2^{k}$ elements. Note that $k=\log n$.

- Two comparisons are made at each stage; $i<j$, and $x>a_{m}$.
- At the first iteration the size of the list is 2^{k} and after the first iteration it is 2^{k-1}. Then 2^{k-2} and so on until the size of the list is $2^{1}=2$.
- At the last step, a comparison tells us that the size of the list is the size is $2^{0}=1$ and the element is compared with the single remaining element.
- Hence, at most $2 k+2=2 \log n+2$ comparisons are made.
- Therefore, the time complexity is $\Theta(\log n)$, better than linear search.

Worst-Case Complexity of Bubble

Sort

Example: What is the worst-case complexity of bubble sort in terms of the number of comparisons made?

$$
\begin{aligned}
& \text { procedure bubblesort }\left(a_{1}, \ldots, a_{n}\right. \text { : real numbers } \\
& \qquad \text { with } n \geq 2) \\
& \text { for } i:=1 \text { to } n-1 \\
& \quad \text { for } j:=1 \text { to } n-i \\
& \quad \text { if } a_{j}>a_{j+1} \text { then interchange } a_{j} \text { and } a_{j+1} \\
& \left\{a_{1}, \ldots, a_{n} \text { is now in increasing order }\right\}
\end{aligned}
$$

Solution: A sequence of $n-1$ passes is made through the list. On each pass $n-i$ comparisons are made.

$$
(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}
$$

The worst-case complexity of bubble sort is $\Theta\left(n^{2}\right)$ since

$$
\frac{n(n-1)}{2}=\frac{1}{2} n^{2}-\frac{1}{2} n
$$

Worst-Case Complexity of Insertion Sort

Example: What is the worst-case complexity of insertion sort in terms of the number of comparisons made?

Solution: The total number of comparisons are:
$2+3+\cdots+n=\frac{n(n-1)}{2}-1$

Therefore the complexity is $\Theta\left(n^{2}\right)$.

```
procedure insertion sort (a,\ldots,a a
        real numbers with }n\geq2\mathrm{ )
    for }j:=2\mathrm{ to }
    i:=1
    while a>> (a
        i:= i+1
    m:=a
    for }k:=0\mathrm{ to }j-i-
        a aj-k}:=\mp@subsup{a}{j-k-1}{
```


Matrix Multiplication Algorithm

- The definition for matrix multiplication can be expressed as an algorithm; $\mathbf{C}=\mathbf{A} \mathbf{B}$ where \mathbf{C} is an $n x \quad n$ matrix that is the product of the $\not{m} \quad k$ matrix \mathbf{A} and the $\Varangle_{k} \quad n$ matrix B.
- This algorithm carries out matrix multiplication based on its definition.
procedure matrix multiplication(A,B: matrices)
$\begin{array}{cl}\text { for } i:=1 \text { to } m & \mathbf{A}=\left[a_{i j}\right] \text { is a } m \times k \text { matrix } \\ \text { for } j:=1 \text { to } n & \mathbf{B}=\left[b_{i j}\right] \text { is a } k \times n \text { matrix } \\ c_{i j}:=0 & \\ \text { for } q:=1 \text { to } k & c_{i j}:=c_{i j}+a_{i q} b_{q j} \\ \text { return } \mathbf{C}\left\{\mathbf{C}=\left[c_{i j}\right] \text { is the product of } \mathbf{A} \text { and } \mathbf{B}\right\}\end{array}$

Complexity of Matrix Multiplication

Example: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two $n^{\times} n$ matrices.

Solution: There are n^{2} entries in the product. Finding each entry requires n multiplications and $n-1$ additions. Hence, n^{3} multiplications and $n^{2}(n-1)$ additions are used.

Hence, the complexity of matrix multiplication is $O\left(n^{3}\right)$.

Boolean Product Algorithm

- The definition of Boolean product of zero-one matrices can also be converted to an algorithm.

$$
\begin{aligned}
& \text { procedure Boolean product(A,B: zero-one matrices) } \\
& \text { for } i:=1 \text { to } m \\
& \text { for } j:=1 \text { to } n \\
& c_{i j}:=0 \\
& \text { for } q:=1 \text { to } k \\
& c_{i j}:=c_{i j} \vee\left(a_{i q} \wedge b_{q j}\right) \\
& \text { return } \mathbf{C}\left\{\mathbf{C}=\left[c_{i j}\right] \text { is the Boolean product of } \mathbf{A} \text { and } \mathbf{B}\right\}
\end{aligned}
$$

Complexity of Boolean Product Algorithm

Example: How many bit operations are used to find $\mathbf{A} \odot \mathbf{B}$, where A and B are $n^{\times} n$ zero-one matrices? Solution: There are n^{2} entries in the $\mathbf{A} \odot \mathbf{B}$. A total of n Ors and n ANDs are used to find each entry. Hence, each entry takes $2 n$ bit operations. A total of $2 n^{3}$ operations are used.

Therefore the complexity is $O\left(n^{3}\right)$

Matrix-Chain Multiplication

- How should the matrix-chain $\mathbf{A}_{1} \mathbf{A}_{2} \cdots \mathbf{A}_{n}$ be computed using the fewest multiplications of integers, where $\mathbf{A}_{1}, \mathbf{A}_{2}, \cdots, \mathbf{A}_{n}$ are $m_{1} \quad m_{2^{2}}, m_{2} \times m_{3}, \cdot$ - •Xn $n_{n} \quad m_{n+1}$ integer matrices. Matrix multiplication is associative (exercise in Section 2.6).
Example: In which order should the integer matrices $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3}$ - where \mathbf{A}_{1} is 30 20 AX20 40, $\mathbf{A}_{3} 10$ - be nultiplied to use the least number of multiplications.
Solution: There are two possible ways to compute $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3}$.
- $\mathbf{A}_{1}\left(\mathbf{A}_{2} \mathbf{A}_{3}\right): \mathbf{A}_{2} \mathbf{A}_{3}$ takes $20 \cdot 40 \cdot 10=8000$ multiplications. Then multiplying \mathbf{A}_{1} by the 2010 matrix $\mathbf{A}_{2} \mathbf{A}_{3}$ takes $30 \times 20 \cdot 10=6000$ multiplications. So the total number is $8000+6000=14,000$.
- $\left(\mathbf{A}_{1} \mathbf{A}_{2}\right) \mathbf{A}_{3}: \mathbf{A}_{1} \mathbf{A}_{2}$ takes $30 \cdot 20 \cdot 40=24,000$ multiplications. Then multiplying the 30 40 matrix $\mathbf{A}_{1} \mathbf{A}_{2}$ by \mathbf{A}_{3} łakes $30 \cdot 40 \cdot 10=12,000$ multiplications. So the total number is $24,000+12,000=36,000$.
So the first method is best.

An efficient algorithm for finding the best order for matrix-chain multiplication can be based on the algorithmic paradigm known as dynamic programming. (see Ex. 57 in Section 8.1)

Algorithmic Paradigms

- An algorithmic paradigm is a a general approach based on a particular concept for constructing algorithms to solve a variety of problems.
- Greedy algorithms were introduced in Section 3.1.
- We discuss brute-force algorithms in this section.
- We will see divide-and-conquer algorithms (Chapter 8), dynamic programming (Chapter 8), backtracking (Chapter 11), and probabilistic algorithms (Chapter 7). There are many other paradigms that you may see in later courses.

Brute-Force Algorithms
 - A brute-force algorithm is solved in the most

 straightforward manner, without taking advantage of any ideas that can make the algorithm more efficient.- Brute-force algorithms we have previously seen are sequential search, bubble sort, and insertion sort.

Computing the Closest Pair of Points by Brute-Force

Example: Construct a brute-force algorithm for finding the closest pair of points in a set of n points in the plane and provide a worst-case estimate of the number of arithmetic operations.
Solution: Recall that the distance between $\left(x_{i} y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ is $\sqrt{\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}}$. A brute-force algorithm simply computes the distance between all pairs of points and picks the pair with the smallest distance.

Note: There is no need to compute the square root, since the square of the distance between two points is smallest when the distance is smallest.

Computing the Closest Pair of Points by Brute-Force

- Algorithm for finding the closest pair in a set of n points.

```
procedure closest pair((\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}),(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{}),\ldots,(\mp@subsup{x}{n}{\prime},\mp@subsup{y}{n}{\prime}):\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}\mathrm{ real numbers)}
min}=
    for }i:=1\mathrm{ to }
    for j:= 1 to i
        if (\mp@subsup{x}{j}{}-\mp@subsup{x}{i}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{j}{}-\mp@subsup{y}{i}{}\mp@subsup{)}{}{2}<min
            then min:=(\mp@subsup{x}{j}{}-\mp@subsup{x}{i}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{j}{}-\mp@subsup{y}{i}{}\mp@subsup{)}{}{2}
            closest pair := (xi, y}\mp@subsup{y}{i}{}),(\mp@subsup{x}{j}{},\mp@subsup{y}{j}{}
return closest pair
```

- The algorithm loops through $n(n-1) / 2$ pairs of points, computes the value $\left(x_{j}-\right.$ $\left.x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}$ and compares it with the minimum, etc. So, the algorithm uses $\Theta\left(n^{2}\right)$ arithmetic and comparison operations.
- We will develop an algorithm with $O(\log n)$ worst-case complexity in Section 8.3.

Understanding the Complexity of Algorithms

TABLE 1 Commonly Used Terminology for the	
Complexity of Algorithms.	
Complexity	

Understanding the Complexity of Algorithms

TABLE 2 The Computer Time Used by Algorithms.

Problem Size	Bit Operations Used					
\boldsymbol{n}	$\boldsymbol{\operatorname { l o g } \boldsymbol { n }}$	\boldsymbol{n}	$\boldsymbol{n} \boldsymbol{\operatorname { l o g } \boldsymbol { n }}$	$\boldsymbol{n}^{\mathbf{2}}$	$\mathbf{2}^{\boldsymbol{n}}$	$\boldsymbol{n} \boldsymbol{!}$
10	$3 \times 10^{-11} \mathrm{~s}$	$10^{-10} \mathrm{~s}$	$3 \times 10^{-10} \mathrm{~s}$	$10^{-9} \mathrm{~s}$	$10^{-8} \mathrm{~s}$	$3 \times 10^{-7} \mathrm{~s}$
10^{2}	$7 \times 10^{-11} \mathrm{~s}$	$10^{-9} \mathrm{~s}$	$7 \times 10^{-9} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	$4 \times 10^{11} \mathrm{yr}$	$*$
10^{3}	$1.0 \times 10^{-10} \mathrm{~s}$	$10^{-8} \mathrm{~s}$	$1 \times 10^{-7} \mathrm{~s}$	$10^{-5} \mathrm{~s}$	$*$	$*$
10^{4}	$1.3 \times 10^{-10} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	$1 \times 10^{-6} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	$*$	$*$
10^{5}	$1.7 \times 10^{-10} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$2 \times 10^{-5} \mathrm{~s}$	0.1 s	$*$	$*$
10^{6}	$2 \times 10^{-10} \mathrm{~s}$	$10^{-5} \mathrm{~s}$	$2 \times 10^{-4} \mathrm{~s}$	0.17 min	$*$	$*$

Times of more than 10^{100} years are indicated with an *.

Complexity of Problems

- Tractable Problem: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the Class P.
- Intractable Problem: There does not exist a polynomial time algorithm to solve this problem
- Unsolvable Problem : No algorithm exists to solve this problem, e.g., halting problem.
- Class NP: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.
- NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

P Versus NP Problem

- The P versus NP problem asks whether the class $P=$ NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
- Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
- Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that $\mathrm{P} \neq \mathrm{NP}$ since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of $\$ 1,000,000$ for a solution.

