Worksheet 3.2 \& 3.3 - The Growth of Functions and Complexity of Algorithms

1. How can big- O notation be used to estimate the sum of the first n positive integers?
2. Show that $3 x^{2}+8 x \log (x)$ is $\Theta\left(x^{2}\right)$.
3. Is the sum of the first n positive integers $\Theta\left(n^{2}\right)$?
4. Give a big- O estimate for the number of of additions used in this segnment of an algorithm:
$t:=0$
for $i:=1$ to n

$$
\begin{gathered}
\text { for } j:=1 \text { to } n \\
t:=t+i+j
\end{gathered}
$$

5. Give a big- O estimate for the number of operations, where an operation is an addition or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the while loop).

$$
\begin{aligned}
& i:=1 \\
& t:=0 \\
& \text { while } i \leq n \\
& \qquad t:=t+i \\
& \quad i:=2 i
\end{aligned}
$$

6. Determine the least number of comparisons, or best-case performance,
(a) required to find the maximum of a sequence of n integers, using Algorithm 1 of Section 3.1.
(b) used to locate an element in a list of n terms with a linear search.
