3.2 Growth of Functions - Worksheet

For 1) - 3) to establish a big-O relationship, find witnesses C and k such that $|f(x)| \leq C|g(x)|$ whenever $x>k$.

1. Determine whether each of these functions is $O(x)$.
(a) $f(x)=10$
(b) $f(x)=3 x+7$
(c) $f(x)=x^{2}+x+1$
(d) $f(x)=5 \log (x)$
(e) $f(x)=\lfloor x\rfloor$
(f) $f(x)=\lceil x / 2\rceil$
2. Find the least integer n such that $f(x)$ is $O\left(x^{n}\right)$ for each of these functions.
(a) $f(x)=2 x^{2}+x^{3} \log (x)$
(b) $f(x)=\left(x^{4}+x^{2}+1\right) /\left(x^{4}+1\right)$
(c) $f(x)=\left(x^{3}+5 \log (x)\right) /\left(x^{4}+1\right)$
3. Show that x^{3} is $O\left(x^{4}\right)$ but that x^{4} is not $O\left(x^{3}\right)$.
