\qquad

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

1. (10 points) Consider the function $f(n)$ which takes as input any integer n and returns $n \bmod 6$, i.e.,

$$
f(n)=n \bmod 6
$$

(a) Calculate the following:
i. $f(13)=$

Solution: $f(13)=13 \bmod 6=1($ since $13=6(2)+1)$
ii. $f(54)=$

Solution: $f(54)=54 \bmod 6=0($ since $54=6(9)+0)$
iii. $f(-7)=$

Solution: $f(-7)=-7 \bmod 6=5($ since $-7=6(-2)+5)$
(b) What is the domain of the function f ? What is its range?

Solution: The domain is \mathbb{Z} (the set of all integers) and the range is $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$
(c) Show that f is not one-to-one.

Solution:

f is clearly not one-to-one, since there are many pairs of integers which have the same remainder when divided by 6 . Just take any two integers which are congruent modulo 6 , i.e., whose difference is divisible by 6 (see the definition on p240 of the textbook).
For example, 13 and 19 are congruent modulo 6, and:

$$
\begin{aligned}
& f(13)=13 \bmod 6=1 \\
& f(19)=19 \bmod 6=1
\end{aligned}
$$

2. (10 points) For this question, use predicate logic in the language of arithmetic, i.e., using the quantifiers (\exists and \forall), the standard logical connectives ($\wedge, \vee, \neg, \rightarrow$), and the standard symbols/predicates of arithmetic ($=,+, \cdot,<,>$). Assume that the domain of discourse for the quantifiers is the set of integers \mathbb{Z}.
(a) The following is a restatement of the Division Algorithm (from p239 of the textbook):

The Division Algorithm: "For any integers a and any positive integer d, there are integers q and r, with $0 \leqslant r<d$, such that $a=d \cdot q+r$."

Express the Division Algorithm as a statement of predicate logic in the language of arithmetic:

Solution:

$$
\forall a \forall d((d>0) \rightarrow \exists q \exists r((r=0) \vee(r>0) \wedge(r<d) \wedge(a=d \cdot q+r))
$$

(b) Translate the following statement of predicate logic into an English sentence about a given integer p :

$$
\forall n((0<n \wedge n \mid p) \rightarrow(n=1 \vee n=p))
$$

(Recall that " $n \mid p$ " is the notation for " n is a factor of p "; see p 238 of the textbook. You can use that phrase in your answer.)

Solution:

"Every positive integer n which is a factor of p is either equal to p or equal to 1. ."
Or more succinctly: "The only positive factors of p are 1 and p."
Note that this is the definition of p being a prime number, which is a fundamental concept in number theory. See pp257-262 in Sec 4.3 of the textbook.
3. (10 points) Here is pseudocode which implements the Division Algorithm (as shown and explained on p253 of the textbook):
procedure division-algorithm (a : integer, d : positive integer)
$q:=0$
$r:=|a|$
while $(r \geqslant d)$:
$r:=r-d$
$q:=q+1$
if $(a<0$ and $r>0)$ then
$r:=d-r$
$q:=-(q+1)$
return (q, r)

List the steps used by this implementation of the Division Algorithm to compute $-19 \bmod 5 \operatorname{and}-19 \operatorname{div} 5$:

Solution:

- Step 0: The inputs to the algorithm are $a=-19$ and $d=5$.

The algorithm initially sets $q=0$ and $r:=|a|=|-19|=19$.

- Step 1: Since $r=19 \geqslant d=5$, the algorithm enters the while loop. The updated values of r and q are

$$
r:=r-d=19-5=14 \text { and } q:=q+1=0+1=1
$$

- Step 2: Since $r=14 \geqslant d=5$, the algorithm again enters the while loop. The updated values of r and q are

$$
r:=r-d=14-5=9 \text { and } q:=q+1=1+1=2
$$

- Step 3: Since $r=9 \geqslant d=5$, the algorithm again enters the while loop. The updated values of r and q are

$$
r:=r-d=9-5=4 \text { and } q:=q+1=2+1=3
$$

- Step 4: Since $r=4<d=5$, the algorithm does not enter the while loop again. Since $a=-19<0$ and $r=4>0$, then algorithm executes the if-then statements, and updates r and q to

$$
r:=d-r=5-4=1 \text { and } q:=-(q+1)=-(3+1)=-4
$$

So the algorithm returns $(q, r)=(-4.1)$, and indeed $-19 \bmod 5=1$ and $-19 \operatorname{div} 5=-4($ since $-19=$ $5(-4)+1)$.
4. (10 points) Use mathematical induction to prove that for all positive integers n, i.e., for all $n \geqslant 1$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}
$$

according to the two steps outlined below.
(Hint: Read Sec. 5.1, pp312-317 of the textbook, especially Examples $1 \& 2$ on pp316-317.)
(a) Let $P(n)$ be the proposition that $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$.

The basis step (or base case) is to show that $P(1)$ is true. Write down $P(1)$ and show that it is true.
Solution: $P(1)$ is the equation

$$
\frac{1}{1 \cdot 2}=\frac{1}{1+1}
$$

which is obviously true, since both sides of the equation equal $\frac{1}{2}$.
(b) For the inductive step, assume that $P(k)$ is true, i.e., assume

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{k \cdot(k+1)}=\frac{k}{k+1}
$$

and show that this implies that $P(k+1)$ is true.
Solution: Assume that $P(k)$ is true:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1}
$$

We need to show $P(k+1)$ is true:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}
$$

Starting with the LHS, and using the assumption that $P(k)$ is true:

$$
\begin{gathered}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
=\frac{k}{k+1} \cdot \frac{k+2}{k+2}+\frac{1}{(k+1)(k+2)}=\frac{k^{2}+2 k}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)(k+1)}{(k+1)(k+2)}=\frac{k+1}{k+2}
\end{gathered}
$$

5. (10 points) Consider a compound proposition ϕ of propositional logic. (See Sec 1.1 of the textbook to review the definition of a compound proposition.)
(a) Write down, in terms of the truth table for ϕ, definitions of what it means for ϕ to be:
i. a tautology:

Solution: A compound proposition ϕ is a tautology if every entry in its truth table (i.e., every entry in the column under ϕ) is T.
ii. satisfiable:

Solution: A compound proposition ϕ is satisfiable if some entry in its truth table is T.
iii. unsatisfiable:

Solution: A compound proposition ϕ is unsatisfiable if every entry in its truth table is F.
(b) Prove that if ϕ is unsatisfiable, then $\neg \phi$ is a tautology.

Solution: Assume ϕ is an unsatisfiable compound proposition. Then, by definition, every entry in its truth table is F. But then every entry in the truth table for $\neg \phi$ is T, since negation "flips" each F entry to T. Thus, by the definition, $\neg \phi$ is a tautology.

