\qquad

Question		Points	Score
	1	10	
2	20		
2	10		
2	4	10	
Total:		50	

1. (10 points) Recall the definitions of rational and irrational real numbers:

Definition: A real number x is rational if there exist integers a and b such that $x=\frac{a}{b}$. A real number is irrational if it not rational.

Use the definition to prove the following theorems:
a. Theorem: If x is rational and $x \neq 0$, then $1 / x$ is also rational.
(Hint: Provide a direct proof.)
Proof:

Solution: For a direct proof, we begin by assume the hypothesis is true. So a proof is as follows:
Assume that x is a non-zero rational real number. By definition (of being rational), $x=\frac{a}{b}$ for integers a and b. But then

$$
\frac{1}{x}=\frac{1}{a / b}=\frac{b}{a}
$$

So $1 / x$ is also a ratio of two integers, and thus is also a rational number.
b. Theorem: If x is irrational, then $1 / x$ is also irrational.
(Hint: Provide a indirect proof, i.e., a proof by contraposition or by contradiction.)

Proof:

Solution: For a proof by contraposition, we begin by assuming the negation of the conclusion. So: Assume that $1 / x$ is not irrational, i.e., that $1 / x$ is rational. That means

$$
\frac{1}{x}=\frac{a}{b}
$$

for integers a and b. But if we solve this equation for x, we see that

$$
x=\frac{b}{a}
$$

which means x is rational. This proves the theorem (since we have shown the negation of the conclusion implies the negation of the hypothesis).
2. Let $A=\{1,2,3,4,5,6\}$ and $B=\{0,1\}$.
a. (10 points) List the elements of the following sets:
i. $A \cup B=$

Solution: $A \cup B=\{0,1,2,3,4,5,6\}$
ii. $A \cap B=$

Solution: $A \cap B=\{1\}$
iii. $A-B=$

Solution: $A-B=\{2,3,4,5,6\}$
iv. $B-A=$

Solution: $B-A=\{0\}$
v. $A \times B=$

Solution: $A \times B=\{(1,0),(1,1),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(5,0),(5,1),(6,0),(6,1)\}$
vi. (Extra credit!) $\mathcal{P}(A) \cap \mathcal{P}(B)=$

Solution: $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing,\{1\}\}$
b. (5 points) Draw a Venn diagram illustrating the sets A and B, representing all of their elements with points in the appropriate regions in the diagram.

Solution:

c. (5 points) Consider the function $f: A \times A \rightarrow \mathbb{N}$ defined by the formula $f\left(a_{1}, a_{2}\right)=a_{1}+a_{2}$.
i. What is the range of f ?

Solution: Note that the maximum value of f is $f(6,6)=6+6=12$, and the minimum value is $f(1,1)=$ $1+1=2$. All the integers between 2 and 12 are also in the range, since each such integer is the sum of a pair of numbers from A. Thus, the range of f is the set $\{2,3,4,5,6,7,8,9,10,11,12\}$.
ii. Show that f is not a one-to-one function.

Solution: In order to show f is not one-to-one, we need to find two distinct inputs in the domain $A \times A$ which get mapped by f to the same output in the range. There are many such examples for this function; for instance $f(3,1)=3+1=4$ and $f(2,2)=2+2=4$.
3. Consider the following definition:

Definition: If a and b are integers, we say that a divides b if there is an integer j such that $b=a * j$, or equivalently, if $\frac{b}{a}$ is an integer j. We also say a is a factor of b, and b is a multiple of a.

Examples: 3 divides 12 since $12 / 3=4$ is an integer, i.e., $12=3 * j$ for $j=4$. But 5 does not divide 12 , since $12 / 5$ is not an integer.
a. (5 points) Let $U=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. List the elements of the following subsets of U :
i. $A=\{n \in U \mid 3$ divides $n\}=$

Solution: A consists of the integer multiples of 3 in U, i.e., $A=\{3,6,9,12\}$
ii. $B=\{n \in U \mid n$ divides 12$\}=$

Solution: B consists of all the factors of 12 in U, i.e., $B=\{1,2,3,4,6,12\}$
b. (5 points) Provide a proof of the following theorem:

Theorem: If a divides b and a divides c, then a also divides $b+c$.
(Hint: Provide a direct proof, and use the definition given above.)
Proof:
Solution: We use the notation $a \mid b$ for " a divides b " (this is standard notation that we will introduce in later in the semester, when we study number theory; see Section 4.1 of the textbook.)
For a direct proof of the theorem, assume $a \mid b$ and $a \mid c$. Then, by the definition, $b=a * j$ and $c=a * k$ for some integers j and k. Then $b+c=a * j+a * k=a *(j+k)$, which establishes that $a \mid(b+c)$.
4. (10 points) Let $A=\{a, b, c\}$.
a. List the elements of the power set of A. (Hint: Since A has 3 elements, its power set has $2^{3}=8$ elements.)
$\mathcal{P}(A)=$
Solution: $\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
b. Construct a function $f: A \rightarrow \mathcal{P}(A)$ which has the following properties:

1. f is one-to-one, and
2. $\forall x \in A(x \in f(x))$

Solution: In order to make f one-to-one need to choose 3 different elements from $\mathcal{P}(A)$ (i.e., subsets of A) as the outputs of $f(a), f(b)$ and $f(c)$.
In order to satisfy the 2nd condition, for $f(a)$ we need to choose a subset of A containing a. There are three such subsets of $A:\{a\},\{a, b\},\{a, b, c$,$\} . In order to define f$, we need choose one of them. Let's say we choose $\{a\}$, i.e., we set $f(a)=\{a\}$. Then for $f(b)$ choose a subset of A containing b, and for $f(c)$ choose a subset of A containing c. A natural set of choices is
$f(a)=\{a\}$
$f(b)=\{b\}$
$f(c)=\{c\}$
But there are other correct solutions, e.g.,
$f(a)=\{a, b\} f(b)=\{b, c\} f(c)=\{a, b, c\}$
An interesting question is: how many different correct solutions are there, i.e., how many different such functions $f: A \rightarrow \mathcal{P}(A)$ satisfying those two properties?

