\qquad

| Question: | 1 | 2 | Total |
| :--- | :---: | :---: | :---: | :---: |
| Points: | 5 | 5 | 10 |
| Score: | | | |

Recall the formal definitions of even and odd integers:
Definition: An integer n is even if $n=2 k$ for some integer k. An integer n is odd if $n=2 k+1$ for some integer k.

1. (5 points) Prove that the product of two odd integers is also odd.
(Hint: use a direct proof to prove "If m and n are both odd integers, then $m * n$ is also an odd integer.")

Solution:

(For a direct proof, we assume the antecedent-in that case that m and n are odd integers-and proceed to prove the consequence that then $m * n$ is also odd.)
Take any two odd integers m and n. By definition of being odd, $m=2 k+1$ and $n=2 j+1$ for integers j, k. (Note that since m and n may be different odd integers, we must assume two different representations of those odd integers, $2 k+1$ and $2 j+1$, respectively.)
Then $m * n=(2 k+1)(2 j+1)=4 j k+2 k+2 j+1=2(2 j k+k+j)+1$, where $2 j k+k+j$ is an integer. Thus, $m * n$ fulfills the definition of being odd.
2. (5 points) Complete the proof of the statement: "If m and n are integers such that $m * n$ is even, then either m is even or n is even."
Proof: We will provide a proof by contraposition. The statement is a conditional of the form $p \longrightarrow q$, where the propositions involved are
$p=" m * n$ is even"
$q=$ " m is even or n is even"
In order to provide a proof by contraposition, we need to prove the contrapositive $\neg q \rightarrow \neg p$. Write out the proof of the contrapositive below.
(Hint: Use DeMorgan's Law to formulate $\neg q$, and then complete the proof below by reasoning from $\neg q$ to show $\neg p$, using the fact given in $\# 1$ above.)

Solution: Applying DeMorgan's Law to formulate $\neg q$, we have:
$\neg q \equiv \neg(m$ is even or n is even $) \equiv \neg(m$ is even $)$ and $\neg(n$ is even $) \equiv(m$ is odd) and (n is odd)
Thus, for a proof by contraposition, we initially assume that it is not the case that either m is even or n is even, which we have shown is equivalent to assuming m is odd and n is odd.
But by \#1 above, if we have two such odd integers m and n, then $m * n$ is odd. This establishes the theorem (since " $m * n$ is odd" is equivalent to $\neg p$).

