2. Solving Systems of Linear Equations in Three Variables

To solve a system involving three variables, the goal is to eliminate one variable. This reduces the system to two equations in two variables. One strategy for eliminating a variable is to pair up the original equations two at a time.

PROCEDURE Solving a System of Three Linear Equations in Three Variables

Step 1 Write each equation in standard form $A x+B y+C z=D$.
Step 2 Choose a pair of equations, and eliminate one of the variables by using the addition method.
Step 3 Choose a different pair of equations and eliminate the same variable.
Step 4 Once steps 2 and 3 are complete, you should have two equations in two variables. Solve this system by using the methods from Sections 3.2 and 3.3 .

Step 5 Substitute the values of the variables found in step 4 into any of the three original equations that contain the third variable. Solve for the third variable.
Step 6 Check the ordered triple in each of the original equations. Then write the solution as an ordered triple within set notation.

Example 1 Solving a System of Linear Equations in Three Variables

Solve the system.

$$
\begin{aligned}
2 x+y-3 z= & -7 \\
3 x-2 y+z= & 11 \\
-2 x-3 y-2 z= & 3
\end{aligned}
$$

Solution:

A $2 x+y-3 z=-7 \quad$ Step 1: The equations are already in standard form.
B $3 x-2 y+z=11$ - It is often helpful to label the equations.
C] $-2 x-3 y-2 z=3$

- The y variable can be easily eliminated from equations A and B and from equations A and C. This is accomplished by creating opposite coefficients for the y terms and then adding the equations.

TlP: It is important to note that in steps 2 and 3 , the same variable is eliminated.

Step 2: Eliminate the y variable from equations A and B.
A $2 x+y-3 z=-7 \xrightarrow{\text { Multiply by } 2 .} 4 x+2 y-6 z=-14$
B $3 x-2 y+z=11 \longrightarrow \begin{aligned} 3 x-2 y+z & =11 \\ 7 x-5 z & =-3 D\end{aligned}$

Step 3: Eliminate the y variable again, this time from equations A and C.

$$
\begin{aligned}
& \text { A } 2 x+y-3 z=-7 \xrightarrow{\text { Multiply by 3. }} 6 x+3 y-9 z=-21 \\
& \text { C }-2 x-3 y-2 z=3 \longrightarrow \frac{-2 x-3 y-2 z=3}{4 x-11 z=-18}
\end{aligned}
$$

Step 4: Now equations D and E can be paired up to form a linear system in two variables. Solve this system.
D $7 x-5 z=-3 \xrightarrow{\text { Multiply by }-4}-28 x+20 z=12$
E $4 x-11 z=-18 \xrightarrow[\text { Multiply by } 7]{ } \quad 28 x-77 z=-126$

$$
\begin{aligned}
-57 z & =-114 \\
z & =2
\end{aligned}
$$

Once one variable has been found, substitute this value into either equation in the two-variable system, that is, either equation D or E.

$$
\begin{aligned}
7 x-5 z & =-3 \\
7 x-5(2) & =-3 \quad \text { Substitute } z=2 \text { into equation } D . \\
7 x-10 & =-3 \\
7 x & =7 \\
x & =1
\end{aligned}
$$

$$
\text { A } \begin{array}{rlrl}
2 x+y-3 z & =-7 & \text { Step 5: } & \\
\text { Now that two variables are known, } \\
2(1)+y-3(2) & =-7 & & \text { substitute these values }(x \text { and } z) \text { into } \\
2+y-6 & =-7 & & \text { any of the original three equations to } \\
y-4 & =-7 & & \text { find the remaining variable } y . \\
y & =-3 & & \text { Substitute } x=1 \text { and } z=2 \text { into } \\
\text { equation } A .
\end{array}
$$

The solution set is $\{(1,-3,2)\}$. Step 6: Check the ordered triple in the three original equations.

$$
\text { Check: } \begin{aligned}
2 x+y-3 z & =-7 \rightarrow 2(1)+(-3)-3(2) \stackrel{?}{=}-7 \downarrow \text { True } \\
3 x-2 y+z & =11 \rightarrow 3(1)-2(-3)+(2) \stackrel{?}{=} 11 \checkmark \text { True } \\
-2 x-3 y-2 z & =3 \rightarrow-2(1)-3(-3)-2(2) \stackrel{?}{=} 3 \checkmark \text { True }
\end{aligned}
$$

Skill Practice Solve the system.

1. $x+2 y+z=1$
$3 x-y+2 z=13$
$2 x+3 y-z=-8$

Answer

1. $\{(1,-2,4)\}$
