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Preface 

This textbook is based on the course “College Algebra and Trigonometry” taught at New 

York City College of Technology, CUNY. It is designed to prepare students for the 

precalculus class at the next level. 

The book is meant to be concise, while at the same time including all the material taught  

by mathematics department of NYCCT. Special attention is paid to present the material 

in a motivated and intuitively clear manner. 

The book is divided into three parts and 25 sessions based on the total of 30 sessions in 

one semester, leaving remaining 5 sessions for 3 in-class exams, one review for final 

exam, and one final exam. 

Each session ends with exercises. Most exercises are designed in pairs with consecutive 

odd and even numbers in such a way that exercises are similar in each pair. A 

recommended approach is for instructors to work out the examples in the lecture part of 

the session during class, then allow students to work on even exercises during class and 

assign the odd exercises for homework (or vice versa). The textbook also contains 

answers to almost all exercises. 

Some sessions contain challenge problems. In sessions 4, 5, 8, 10, 13 and 23, challenge 

problems are given in parametric form, so they also can be used by instructors to generate 

problems for quizzes and exams by replacing parameters with numbers. 

I would like to thank my colleagues from the Mathematics Department. My special 

thanks to Thomas Tradler and Holly Carley for a careful reading of the first part of the 

book and many valuable comments and suggestion. I am grateful to Roy Berglund for a 

detailed review of the text and many useful tips. I thank Satyanand Singh and Joel 

Greenstein for suggesting for improving the text. 

Also, I would like to thank my brother, Dr. Leonid Rozenblum, for numerous corrections 

and recommendations. 

Alexander Rozenblyum 

January 20, 2020 

The textbook was updated on January 2022. In particular, some bugs were fixed, more 

problems were added, including challenges (Ch. 2, 4, 8, 10, 14, 15, 16, 18, 19, 20, 21, 

23). Some challenges problems can be used as small student projects.  

Alexander Rozenblyum 
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Rational and Irrational 

Expressions and Equations
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Session 1: Systems of Three Linear Equations in Three Variables 

Session 1 

Systems of Three Linear Equations in Three Variables 

We assume that readers are already familiar with linear equations in one variable and 

with systems of two linear equations in two variables. Recall that linear equations in one 

variable x can be written as ax + b = c, and systems of two linear equations in two 

variables x and y can be written as 

1 1 1

2 2 2

a x b y c

a x b y c

+ =


+ =
. 

In this session, we consider systems of three linear equations in three variables. 

The general form of such systems is this 









=++

=++

=++

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa

. 

Here x, y, and z are variables (unknown values). All other letters are given numbers. 

Numbers that are written next to variables (labeled with letters a, b and c) are called the 

coefficients of the system. The above system has nine coefficients. A solution of the 

system is a triple (X, Y, Z) that satisfies the system (i.e., makes each equation a true 

statement after substituting these numerical values for variables (x, y, z)). 

Note. Keep in mind that a triple (X, Y, Z) represents one solution, not three. 

When solving equations, we often deal with the movement of terms from one side of the 

equation to another. Technically, this action can be performed directly by moving the 

terms and changing their signs (see Example 1.0 below) or indirectly by adding or 

subtracting the same terms on both sides of the equation. We call the direct method the 

Moving method, and the indirect method the Adding method. As an example, let’s 

compare these methods when solving the equation 2x – 1 = x + 5. 

Example 1.0. Solve the equation 2x – 1 = x + 5 by both methods: adding and moving. 

To solve the equation, we collect the terms with unknown x on the left side of the 

equation, and the numerical terms on the right side. 

2



Session 1: Systems of Three Linear Equations in Three Variables 

Adding Method Moving Method 

Write +1 underneath both sides of the equation: 

          2x – 1 = x + 5 

+ 1 + 1

Cancel –1 and 1 on the left side and add 5 and 1 

on the right side: 

          2x = x +6 

Write  –x underneath both sides: 

         2x = x +6 

–x   –x

Subtract terms on the left side and cancel x on 

the right side:  

         x = 6. 

Move (–1) to the right side (and change it 

to +1), and move x to the left side (and 

change it to – x): 

2x – x = 5 + 1 

Subtract terms on the left side and add 

terms on the right side: 

x = 6. 

As you can see, the Moving method is simpler. In this textbook, we will most often use it. 

There are different methods of solving systems of linear equations with any number of 

equations and any number of variables. Here we consider the elimination method. 

Using this method, we can follow these steps: 

1) Eliminate one of the variables of the give system. To do this, first decide which

variable to eliminate. Theoretically, you may eliminate either one. Try to

eliminate variable with the smaller coefficients. To eliminate, take any pair of

equations of the system and proceed in the same way as for 2 x 2 system: multiply

equations by appropriate numbers and then add them up. As a result, you will get

an equation with the two remaining variables.

2) Take another pair of equations and eliminate the same variable. Do not eliminate

another variable, stay with the variable that you choose. As a result, you will get

another equation with the same two remaining variables as in step 1.

3) Combine two equations that you got in steps 1 and 2 into 2 x 2 system and solve

it. You can use elimination method again. As a result, you will get numerical

values of two variables.

4) Substitute the above values into one of the equations of the original system and

solve it for the third variable.

Theoretically, there are three possibilities regarding the number of solutions of the linear 

system: it may have 

1) One solution (so, one triple). We also say that the system has unique solution.

2) No solutions at all. Such system is called inconsistent.

3) Infinite many solutions. Such system is called dependent.

3



Session 1: Systems of Three Linear Equations in Three Variables 

Examples below demonstrate the elimination method. 

Example 1.1. Solve the system 

3 2 3

2 4 5 1

8 3 3 17

x y z

x y z

x y z

− + = −


+ − =
− + + =

. 

Solution. 

1) We have many options for choosing a variable to eliminate. In fact, we can eliminate

any. Let’s eliminate y. As the first pair of equations, we take the first and the second:





=−+

−=+−

1542

323

zyx

zyx

     To eliminate y, we want the coefficients for y in both equations to be equal in absolute 

values but have the opposite signs. In this case, if we add the equations, variable y 

will be cancelled (eliminated). To get this case, it’s enough to multiply the first 

equation by 4. 

Note.  Multiplication an equation by a number means multiplying all the terms (on the 

left and right sides) of the equation by that number. After multiplying the first 

equation by 4, we get 





=−+

−=+−

1542

128412

zyx

zyx

Now add these equations and y is eliminated: 

12x + 2x + 8z – 5z = – 12 + 1, or 14x + 3z = –11. 

2) As the second pair of equations, we take the first and third:





=++−

−=+−

17338

323

zyx

zyx

Number 3 outside the braces means that we intend to multiply the first equation by 3: 





=++−

−=+−

17338

9639

zyx

zyx

Add these equations to eliminate y:  9x –8x + 6z +3z = –9 + 17, or  x + 9z = 8. 

3) Combine the resulting equations from steps 1 and 2 into one system:





=+

−=+

89

11314

zx

zx
. 

To solve this system, we use the elimination method again: 

3 
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Session 1: Systems of Three Linear Equations in Three Variables 





=+

−=+

89

11314

zx

zx
       





−=−−

−=+

11212614

11314

zx

zx

  3z – 126z  = –11 – 112       –123z = – 123       z = 1. 

       At this point we found the variable z = 1. Substitute it into the second equation in 

step 3) and solve for x: 

9 1 8 1.x x+  =  = −

4) Substitute the values x = – 1 and z = 1 into the first equations of the original

system, and solve it for y:

312)1(3 −=+−− y ,   –3 –y + 2 = –3,   –y = – 3 + 3 –2,   –y = –2,   y = 2.

Final answer: the system has one (unique) solution 

x = –1,  y = 2,  z = 1, or as a triple  (–1, 2, 1). 

Example 1.2. Solve the system 

2 4 5

2 3 1

4 7 7

x y z

x y z

x y z

− + =


+ − =
 − + =

. 

Solution. 

1) Let’s eliminate z. As the first pair of equations, we take the first and the second:

2 4 5

2 3 1

x y z

x y z

− + =


+ − =
    

2 4 5

8 12 4 4

x y z

x y z

− + =


+ − =

Add the last equations to eliminate z:  x + 8x – 2y + 12y = 5 + 4,   9x + 10y = 9. 

2) As the second pair of equations, we take the second and the third:





=+−

=−+

774

132

zyx

zyx
    

14 21 7 7

4 7 7

x y z

x y z

+ − =


− + =

Add the last equations: 14x + 4x +21y – y  = 7 + 7,  18x + 20y = 14,  9x + 10y = 7. 

3) Combine the resulting equations from steps 1 and 2 into one system:

9 10 9

9 10 7

x y

x y

+ =


+ =

Notice that the left sides of both equations are the same, but the right sides are 

different. Therefore, this system does not have solutions, so the system is 

inconsistent. 

Final answer: the system does not have solutions. We can also say that the solution set 

is an empty set (the symbol for empty set is  ). 

–14

4 

7

5
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Example 1.3. Solve the system 









−=−+

=+−

=+−

423

7568

5342

zyx

zyx

zyx

. 

Solution.  

1) Let’s eliminate x.  As the first pair of equations, we take the first and the second: 

  




−=−+

=+−

423

5342

zyx

zyx
    





=+−−

=+−

8462

5342

zyx

zyx
 

Add the last equations to eliminate x:   – 4y – 6y + 3z + 4z = 5 + 8,   –10y + 7z = 13. 

2) As the second pair of equations, we take the second and the third: 

  




−=−+

=+−

423

7568

zyx

zyx
    





=+−−

=+−

3216248

7568

zyx

zyx
 

Add the last equations: – 6y – 24y + 5z + 16z = 7 + 32,  – 30y + 21z = 39, 

–10y + 7z = 13. 

3) Combine the resulting equations from steps 1 and 2 into one system: 





=+−

=+−

13710

13710

zy

zy
 

Notice that both equations coincide. So, actually, we have only one equation. In this 

case we cannot find the values of y and z uniquely. Indeed, we can assign any 

numerical value to one of the variables y or z, say to z. Then we can solve the above 

equation for y. Since there are infinite values of z to choose from, we get an infinite 

number of pairs ),( zy  which are solutions of the above 2 x 2 system. It means that 

the original system has infinitely many solutions. Substituting y and z into any of the 

original equations, we can find x. Finally, we will get infinitely many triples 

(X, Y, Z). So, the system is dependent. 

We come up to an interesting question, how to describe an infinite set of all solutions of 

the system. Of course, we cannot create an infinite list of them. Instead, we can use the 

parametric form to describe the solution set. It means the following. Let’s solve the 

above equation –10y + 7z = 13 for y in terms of z: 

13 7
10 7 13 10 13 7 .

10 10
y z y z y z− + =  − = −  = − +  

Here the variable z may take any values, and we call it the free parameter. Let’s denote 

this parameter by the letter t: z = t. Then, ty
10

7

10

13
+−= . Now, we can express the 

–2  

–8  

6



 

Session 1: Systems of Three Linear Equations in Three Variables 

variables x in terms of the parameter t by substituting expressions for y and z into any 

equation of the original system. Let’s substitute expressions for y and z into the third 

equation (in which the coefficient for x is 1) and solve for x: 

13 7 39 21
3 2 4 2 4

10 10 10 10
x t t x t t

 
+ − + − = −  − + − = − 

 
, 

39 21 39 21 20 40 1
2 4

10 10 10 10

t t t
x t t

− + − − −
= − + − = = . 

We can also write x as tx
10

1

10

1
−−= . Now we have described all unknowns in 

parametric form: 

1 1 13 7
, , .

10 10 10 10
x t y t z t= − − = − − =  

Here t is a parameter that takes any numerical value. 

Note. We can get the specific (particular) numerical solutions of the original system from 

the above parametric representation by assigning any specific number to the parameter t. 

For example, if we put t = 0, we get the particular solution 0,
10

13
,

10

1
=−=−= zyx .  

7



 

Session 1: Systems of Three Linear Equations in Three Variables 

 

Exercises 1 
 

In exercises 1.1 and 1.2, solve the system of equations. 

If the system is inconsistent, state that. 

If the system is dependent, state that. 

 

1.1. 

     a)   

3 6 4 1

5 2 8

6 6

x y z

y z

z

+ − =


+ =
 = −

 

 

     b)   

2 3 10

5 2 3 1

3 4 5 5

x y z

x y z

x y z

− + = −


+ − =
− + + = −

 

 

     c)   

3 2 1

11 10 9 5

2 3 1

x y z

x y z

x y z

+ + =


+ + =
 + + =

 

 

      d) 

4 2 3 7

6 2 4

5 3 4 2

x y z

x y z

x y z

− + =


+ − = −
− + + = −

 

 

     e)   

5 3 8 6

2 1

3 2 5 4

x y z

x y z

x y z

+ − =


+ − =
 + − =

 

 1.2. 

    a)   

4 3 2 4

2 5 19

3 9

x y z

y z

z

+ − =


− = −
 =

 

 

    b)   

4 2 3 10

2 5 21

8 7 5 6

x y z

x y z

x y z

+ − =

− + + = −
 + − =

 

 

    c)   

3 4

3 2 3

6 4 2 1

x y z

x y z

x y z

− + =


+ + =
 + + = −

 

 

     d) 

5 4 2 9

2 4 6

8 3 3 2

x y z

x y z

x y z

− + =


+ − = −
 − − =

 

 

    e)   

3 2 4

2 3

4 3 7

x y z

x y z

x y z

+ + =


− + =
 + + =

 

 

Challenge Problem 
 

1.3.  For the systems in exercises 1.1 and 1.2, that are dependent,  

  1)  Describe solutions in parametric form. 

  2)  Find a particular solution. 

        (Answers may vary). 

8



 

Session 1A: Determinants and Cramer’s Rule 

Session 1A 
 

Determinants and Cramer’s Rule 
 
In the previous session, we solved systems of three linear equations by the elimination 

method. This method requires some specific operations performed on the equations of 

given systems. In this session, we consider formulas that allow us to explicitly calculate 

solutions by directly substituting the coefficients of the equations into these formulas, 

instead of manipulating the equations. Such formulas are called the Cramer’s rule named 

after Gabriel Cramer (1704 – 1752), a Swiss mathematician. Cramer’s rule is not efficient 

for systems with many equations, and it is not used in practice. However, it is easy enough 

to use for systems with two and three equations that we consider here. Cramer’s rule is 

especially convenient when the coefficients of given system are integers, but the solutions 

are fractions. 
 
Case of a system with two equations 

We derive Cramer’s rule for the system 





=+

=+

feydx

cbyax
 

First, we solve this system by elimination method. Let’s eliminate the variable y by 

multiplying the first equation by e, the second equation by –b, and adding the resulting 

equations: 

               




=+

=+

feydx

cbyax
       





−=−−

=+

bfbeybdx

cebeyaex
 

Add the equations on the right, and solve for x: 

aex – bdx = ce – bf       (ae – bd)x = ce – bf. So, if 0ae bd−  , 

          
bdae

fbce
x

−

−
= . 

In similar way we can find y by eliminating x: 

 

   




=+

=+

feydx

cbyax
        





=+

−=−−

afaeyadx

cdbdyadx
 

Add the equations on the right, and solve for y: 

– bdy + aey = –cd + af     (ae – bd)y = af – cd. So, if 0ae bd−  , 

   
bdae

cdaf
y

−

−
= . 

–b 

             e 

 

 – d 

a 

9



 

Session 1A: Determinants and Cramer’s Rule 

We have come up with the following general formulas for the solutions of a system of two 

linear equations with two variables: 

bdae

fbce
x

−

−
= , 

bdae

cdaf
y

−

−
= , (when 0ae bd−  ). 

Notice that the denominators of both fractions are the same, and the structure of the 

numerators looks similar to that of the denominators. Cramer’s rule represents these 

formulas in terms of a special number that is called the determinant. The determinant is 

defined by four numbers, say k, l, m, and  n. Here is the notation and the definition of the 

determinant: 

mlkn
nm

lk
−= . 

We call this a 22  determinant. As you can see, to calculate the determinant, we take the 

product along the main diagonal (from left top corner to right bottom corner, so we multiply 

k by n) minus the product along the minor diagonal (from left bottom corner to right top 

corner, so we multiply m by l). 

If you return to the above formulas for x and y, you may notice that their numerators and 

denominators can be written in terms of determinants. We thus derived the following rule, 

which is called the Cramer’s rule: 

To solve the system 





=+

=+

feydx

cbyax
 

we proceed in the following three steps: 

1) Calculate the determinant D which is called the determinant of the system: 

bdae
ed

ba
D −== . 

 Notice that the coefficients c and f from the right side of the system are not used in this 

determinant. It consists of the coefficients for x and y only. 

2) Calculate another two determinants, xD  and yD : 

       bfce
ef

bc
Dx −== ,  cdaf

fd

ca
Dy −== . 

 Notice that the determinant xD  is obtained from D by replacing its first column with 

the column of the coefficients c and f. Similarly, the determinant yD  is obtained from 

D by replacing its second column with the column of “free” coefficients. 

3) If 0D  , calculate the solution of the system by the formulas 

10



 

Session 1A: Determinants and Cramer’s Rule 

D

D
x x= ,  

D

D
y

y
= . 

Note. As you see, the denominator in these fractions is the determinant D. Therefore, these 

formulas make sense only if 0D . If D = 0, then the system does not have a unique 

solution. Instead, it either does not have solutions at all (the system is inconsistent), or it 

has infinitely many solutions (the system is dependent). To detect which case we have, we 

should check xD  (or yD ) for zero. If 0xD , then there are no solutions. If 0=xD , then 

the system has an infinite number of solutions. (If D = 0, then both xD  and yD  are equal 

or not equal to zero simultaneously, see exercise 1A.7). 

Example 1A.1. Solve the following system using the Cramer’s rule. 





=+

=−

735

427

yx

yx
. 

Solution. 

1) Calculate the determinant D of the system: 

311021)2(537
35

27
=+=−−=

−
=D . 

2) Calculate the determinants xD  and yD : 

261412)2(734
37

24
=+=−−=

−
=xD , 

.2920494577
75

47
=−=−==yD  

3) Write the solution of the system: 

31

26
==

D

D
x x

,  
31

29
==

D

D
y

y
. 

Final answer: 
31

26
=x , 

31

29
=y , or, as a pair, 

26 29
,

31 31

 
 
 

. 

Case of a system with three equations 

We will describe the Cramer’s rule for the system 









=++

=++

=++

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa

. 

11
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Similar to systems with two equations, the solutions of this system can also be represented 

in terms of determinants as ratios of determinants xD , yD , and zD  corresponding to the 

variables x, y, and z, to the common determinant D of the system. We now describe how to 

find these determinants. 

We will not derive these formulas in this text, but just provide the final result. The 

determinant D of the above system is denoted by 

333

222

111

cba

cba

cba

D = . 

This is a 33  determinant constructed from the coefficients of the system. There are 

several methods to calculate it. We only consider here one method: a direct calculation. 

Direct calculation method. Here is the formula for the determinant D: 

132321321 cbaacbcbaD ++=  

                 132321321 abccababc −−− . 

You can consider this formula as a definition of the determinant. It seems to be difficult to 

memorize such a formula. Notice that it contains six terms: three terms with the plus sign, 

and another three with the minus sign. Here is one of the possible ways to remember this 

formula. Extend (double) the determinant D to the following table: 

















333333

222222

111111

cbacba

cbacba

cbacba

. 

To get the three terms of the determinant with the plus sign, calculate products along the 

main diagonal 321 ,, cba , and two parallel diagonals 321 ,, acb  and 321 ,, bac . 

To get the three terms with the minus sign, calculate products along the minor diagonal 

1 2 3, ,c b a , and two parallel diagonals 1 2 3, ,a c b  and 1 2 3, ,b a c . Symbolically, we multiply  

coefficients along the lines 

                 

* * * * * *

* * * * * *

* * * * * *

 
 
 
  

                       

* * * * * *

* * * * * *

* * * * * *

 
 
 
  

 

               Terms with the plus sign    Terms with the plus sign 

Note. The last column of the above table is not used, so it is not necessary to write it. 

12



 

Session 1A: Determinants and Cramer’s Rule 

Example 1A.2. Calculate the following determinant by direct calculation 

302

423

265

−

−−

=D . 

Solution. Construct the extended table (we dropped the last column) 

















−

−−−

02302

23423

65265

 

We have 

  03)2(2)4()6(325 −+−−+=D  

     1405484830)6(335)4(0)2(22 =+++=−−−−−− . 

Now, we are ready to describe the Cramer’s rule for the system 









=++

=++

=++

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa

. 

To solve the above system we proceed in the following three steps: 

1) Calculate the determinant D of this system: 

333

222

111

cba

cba

cba

D = . 

2) Calculate the three other determinants, xD , yD  and zD  that correspond to variables x, 

y, and z. These determinants are constructed by replacing corresponding columns of 

the determinant D with the column from the right side of the system:   

333

222

111

cbd

cbd

cbd

Dx = ,     

333

222

111

cda

cda

cda

Dy = ,     

333

222

111

dba

dba

dba

D = . 

3) If 0D  , calculate the solution of the system via the formulas 

, ,
yx z

DD D
x y z

D D D
= = = . 

13



 

Session 1A: Determinants and Cramer’s Rule 

Note. Similar to the case of a system with two variables, if D = 0, then either there is no 

solution, or there is an infinite number of solutions. 

Example 1A.3. Solve the following system using the Cramer’s rule. 









=+

−=−+

=−−

532

8423

7265

zx

zyx

zyx

 

Solution.  

1) The determinant D of the system is 

302

423

265

−

−−

=D . 

This is exactly the same determinant as in example 1A.2, so D = 140. 

2) Calculate the determinants xD , yD  and zD : 

305

428

267

−−

−−

=xD ,   

352

483

275

−−

−

=yD ,   

502

823

765

−

−

=zD . 

For determinate xD , construct the extended table 

7 6 2 7 6

8 2 4 8 2

5 0 3 5 0

− − − 
 
− − −
 
  

. 

7 2 3 ( 6) ( 4) 5 ( 2) ( 8) 0

5 2 ( 2) 0 ( 4) 7 3 ( 8) ( 6) 38

xD =   + −  −  + −  − 

−   − −  −  −  −  − =
    

For determinate yD , construct the extended table 

5 7 2 5 7

3 8 4 3 8

2 5 3 2 5

− 
 

− − −
 
  

. 

5 ( 8) 3 7 ( 4) 2 ( 2) 3 5

2 ( 8) ( 2) 5 ( 4) 5 3 3 7 201

yD =  −  +  −  + −  

−  −  − −  −  −   = −
 

For determinate zD , construct the extended table 
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5 6 7 5 6

3 2 8 3 2

2 0 5 2 0

− − 
 

−
 
  

.  

5 2 5 ( 6) ( 8) 2 7 3 0

2 2 7 0 ( 8) 5 5 3 ( 6) 208

zD =   + −  −  +  

−   −  −  −   − =
 

3) Calculate the solutions x, y, and z of the system 

38 19

140 70

xD
x

D
= = = ,  

140

201
−==

D

D
y

y
,  

35

52

140

208
===

D

D
z z . 

Final answer: 
35

52
,

140

201
,

70

19
=−== zyx , or, as a triple, 

19 201 52
, ,

70 140 35

 
− 

 
. 
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Exercises 1A 
 

In exercises 1A.1 and 1A.2, solve the systems of equations using Cramer’s rule. 

 

1A.1.  
3 5 4

7 6 8

x y

x y

− + =


− =
 

 
1A.2.  

2 3 7

5 4 9

x y

x y

− =


+ =
 

 

In exercises 1A.3 and 1A.4, calculate the determinants. 

 

1A.3.  

3 2 1

5 4 3

2 1 7

D

−

= − −  

 

1A.4.  

1 6 7

7 5 3

4 3 2

D

−

= −

−

 

 

In exercises 1A.5 and 1A.6, use the results of exercises 1A.3 and 1A.4 respectively to solve 

the systems of equations using Cramer’s rule. 

 

1A.5.   

3 2 1

5 4 3 0

2 7 2

x y z

x y z

x y z

− + =

− + − =
 + + =

 

 

1A.6.   

6 7 2

7 5 3 1

4 3 2 0

x y z

x y z

x y z

+ − =


− + = −
 − + =

 

 

 

Challenge Problem 
 

1A.7.  As we described for the 22  system 




=+

=+

feydx

cbyax
, determinants D, xD  and yD  

are defined by the formulas 

  ,D ae bd= − xD ce bf= − , and yD af cd= − . 

         Let D = 0 and 0xD = . Show that if b or e is not zero, then 0yD = . 

         Give an example when both b and e are zeros, and this statement is wrong (i.e. 

         D = 0, 0xD = , but 𝐷𝑦 ≠ 0). 
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Session 2 
 

Quadratic Equations: Factored Form 
 

When solving a linear equation ax + b = 0 with 0a , we always get a unique solution 

a

b
x −= . In some cases, problems arise leading to more complicated equations that may 

have more than one solution. 

Example 2.0. Suppose you need to measure a piece of land in the shape of rectangle, 

having a given area A and a given perimeter P (length of fence). What are the sides of this 

rectangle? 

Solution (equation only). Let’s denote the sides of the rectangle by variables x and y. Then 

Ayx =  (area), and Pyx =+ 22  (perimeter). We can solve the last equation for y: 

2y = P – 2x, and 
2

2xP
y

−
= . If we substitute this expression for y into the first equation 

Ayx = , we will get 

( ) 2 22
2 2 2 2 2 2 0

2

P x
x y x A x P x A xP x A x Px A

−
 =  =  − =  − =  − + = . 

We come up with an equation that contains 
2x . We read this expression as “x squared”. By 

definition, 
2x x x=  . We will study expressions like this in details in session 3. 

Informally, equations that contain 
2x  and are similar to the above, are called the quadratic 

equations (as opposed to linear equations: ax + b = 0). 

More precisely, an equation for the variable x is called the quadratic equation, if it can be 

written in the form 

    0,02 =++ acbxax . 

This form is called the standard form. Here a, b, and c are constant numbers which are 

called the coefficients: a is called the leading, and c is called free (free of x) coefficient. 

Left side of this equation is called the quadratic trinomial. Roots (solutions) of the 

quadratic equation are also called roots of the quadratic trinomial. 

Note. If we omit the restriction 0a , the above equation will not necessarily be a 

quadratic: when a = 0, the equation becomes linear 0bx c+ = . Therefore, when dealing 

with quadratic equations, we will always assume that the leading coefficient 0a . 

Coefficients b and c may be any real numbers, including 0. Also notice that in the standard 

form the right side of the equation is equal to zero. 

The quadratic equation can be given in various forms, but if necessary, it can always be 

presented in a standard form. 
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Example 2.1. Write the following equations as quadratic equations in standard form. 

Identify the coefficients a, b, and c. 

1) (2x – 1)(x + 5) = 0. 

2) 5)23( 2 =+x . 

Solution. In both equations we just need to distribute, combine like terms, and bring all 

terms from the right side to the left (if needed). 

1)  5925102)5)(12( 22 −+=−−+=+− xxxxxxx . 

     We get the standard form 

          22 9 5 0,x x+ − =  so,  a = 2, b = 9, c = – 5. 

2)  2 2 2 2(3 2) 5 9 12 4 5 9 12 4 5 0 9 12 1 0x x x x x x x+ =  + + =  + + − =  + − = . 

     We get the standard form 

29 12 1 0,x x+ − =  so,  a = 9, b = 12, c = – 1. 

Notes.  

1) In Example 2.1, 1), we say that the equation is written in the factored form. 

2) In Example 2.1, 2), we say that the equation is written in the squared form. We 

will discuss this form in session 9. 

3) In solving Example 2.1, 2), we used the following formula (square of the sum 

formula): 

 

 

 

Another useful formula is the square of the difference formula: 

 

 

 

4) We will also use the following formula which is called the difference of squares: 

 

 

This formula tells us how to factor the difference of two squares. Try to memorize the 

above three formulas. 
 
When solving a quadratic equation, it is not necessary to always represent it in the standard 

form. In some cases, other forms may be preferable, as in Example 2.1: the factored form 

or the squared form. These are the forms in which the quadratic equation can be solved 

easier than in the standard form. Here we consider the factored form, and in session 9 – the 

squared form. 

2 2 ( )( )a b a b a b− = − +  

( )
2 2 22a b a ab b+ = + +  

( )
2 2 22a b a ab b− = − +  
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Factored Form of the Quadratic Equation 

In general, the factored form of the quadratic equation looks like this: 

    (mx + n)(px + q) = 0. 

The method to solve this equation is based on the following simple observation: if the 

product of two values A and B is zero, i.e. 0=BA , then at least one of them is zero: 

A = 0 and/or B = 0. Using this property (which is called the zero-product property), the 

equation (mx + n)(px + q) = 0 can be split into two linear equations: 

      mx + n = 0 and  px + q = 0, 

which can be solved to get the solutions to the original equation. 

Example 2.2. Solve the equation from Example 2.1, 1):  (2x – 1)(x + 5) = 0. 

Solution. Since this equation is written in factored form, using the zero-product property 

it can immediately be split into two equations: 2x – 1 = 0 and x + 5 = 0. From the first 

equation, 
2

1
=x , and from the second, x = – 5. So, the original equation has two solutions: 

2

1
=x  and  x = – 5. 

Many quadratic equations (but not all, if we use only rational numbers) can be solved by 

factoring. Using this method, we first represent the given equation in the factored form, 

and then split it into two linear equations like in Example 2.2. We consider separately two 

cases for quadratic equations: the case when the leading coefficient 1a = , and the case 

when 1a  . 

Case: leading coefficient 1a = . 

In this case the standard form of the equation is 

 02 =++ cbxx . 

Such an equation (when the leading coefficient is 1) is called the reduced equation. To 

factor, we need to represent the left side as a product of two linear expressions (two pairs 

of parentheses): ( )( ) 0x p x q+ + = . Let’s distribute the left side and combine like terms: 

                   2 2( )( ) 0 ( ) 0x p x q x px qx pq x p q x pq+ + = + + + =  + + + = . 

If we compare the last equation with the original 02 =++ cbxx , we conclude that 

 p + q = b (coefficient for x), and cqp = (free coefficient). This conclusion gives us an 

idea: to factor, we need to find two numbers p and q such that their sum is the middle 

coefficient b and the product is the last coefficient c. 

Technically, to factor we can start with a template (skeleton) for the equation: 

    (x + __)(x  + __) = 0. 
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Then consider all possible ways to factor the last coefficient c, and select such factors 

whose sum is b. Replace the blanks with these numbers. 

Example 2.3. Solve the quadratic equation 0652 =++ xx  by factoring. 

Solution. Start with the template (x + __)(x  + __) = 0. For the last coefficient 6, there are 

two ways to factor: 6 2 3=   and 6 1 6=   (we ignore here negative numbers). We select 

factors 2 and 3 since their sum is the middle coefficient 5. Replacing blanks with these 

numbers, we get the factored form 

     (x + 2)(x  + 3) = 0. 

Now, using the zero-product property, split it into two equations: 2 0x + =  and 3 0x + = . 

Solve each and get two solutions: 

 x = – 2 and  x = – 3. 

Note. Keep in mind that in the factored form, the right side of the equation must be zero. 

For example, the equation (x – 1)(x + 2) = 4 is NOT written in factored form and cannot 

be split immediately into two linear equations. 

Example 2.4. Solve the above equation (x – 1)(x + 2) = 4 by factoring. 

Solution. To write this equation in factored form, we first represent it in standard form by 

distributing the left side and combining like terms 

4222 =−−+ xxx , or 062 =−+ xx . 

Now to factor, we write the template (x + __)(x  + __) = 0, and find two numbers such that 

the product is – 6 and the sum is 1 (which is the coefficient for x). We can find 3 and – 2. 

Substitute these numbers for the blanks and get the factored form (x + 3)(x – 2) = 0. Solving 

the equations x + 3 = 0 and x  – 2 = 0, we get two solutions: 

x = – 3 and  x = 2. 

Example 2.5. Solve the quadratic equation 072 =+ xx  by factoring. 

Solution. Here the coefficient c = 0. We can factor the left side just by taking x out of 

parentheses: x(x + 7) = 0. From here, x = 0 and 7 0 7x x+ =  = − . The final answer is: 

x = 0 and x = – 7. 

Example 2.6. Solve the quadratic equation 
23 48 0x − =  by factoring. 

Solution. Here the leading coefficient is not 1, it is 3. Notice, however, that both 

coefficients 3 and – 48 divisible by 3, and we can factor this 3 out: ( )23 16 0x − = . From 

here we conclude that the expression inside the parentheses must be zero, so we may drop 

the factor 3 and get an equation with the leading coefficient 1: 
2 16 0x − = . Another way to 

get this equation is just to divide all terms of the original equation by 3. Now, to factor the 

left side of this equation, we may recognize it as the difference of two squares 
2 2a b−  with 

2 2a x=  and 
2 16b = . Using the formula ( )( )2 2a b a b a b− = − + , we write the equation 
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2 16 0x − =  in the factored form ( )( )4 4 0x x− + = . Now it remains to solve the two 

equations 4 0x − =  and 4 0x + = , and get the final answer: x = 4 and  x = – 4. The final 

answer can also be written as 4x =  , meaning that we have combined both roots in one 

formula. 

Case: leading coefficient 1a  . 

We will present a method how to reduce the quadratic equation 02 =++ cbxax  when 1a   

to the case 1a =  in such a way that if coefficients a, b and c are integers, then coefficients 

of the reduced equation are also integers. In some cases, it is easier to solve the reduced 

equation. The method is based on the following 

Proposition. Let r be a root of the equation 
2 0x bx ac+ + = . Then  

r

a
 is a root of the 

equation 
2 0ax bx c+ + = . 

Proof. By definition of the root r, 
2 0r br ac+ + = . Divide both sides by a:  

         

22 2

2
0 0 0.

r br ac r r r r
a b c a b c

a a a a a a a

   
+ + =  + + =  + + =   

   
 

The last equality means that 
r

a
 is a root of the equation 

2 0ax bx c+ + = . ∎ 

This proposition allows us to solve the equation 
2 0ax bx c+ + =  in the following three 

steps: 

1) Construct (temporary) a reduced equation 02 =++ acbxx . In words: take away leading 

coefficient a from 
2x  and multiply it by c. 

2) Solve the above reduced equation. Let’s its roots be r and s. 

3) Divide both r and s by a to get the roots of the original equation 
2 0ax bx c+ + = . The 

roots are 
r

a
 and 

s

a
. 

Example 2.7. Solve the equation 0456 2 =−+ xx . 

Solution. We use the above method. 

1) Construct the reduced equation 
2 5 6 4 0x x+ −  =  or 02452 =−+ xx . 

2) Solve the reduced equation by factoring. To factor, we need to find two numbers such 

that the product is –24 and the sum is 5. These numbers are 8 and –3. The above reduced 

equation is factored as: (x + 8)(x – 3) = 0. Its roots are  –8 and 3. 

3) Divide both –8 and 3 by the leading coefficient 6 of the original equation to get its 

roots. The roots are 
8 4

6 3

−
= −  and 

3 1

6 2
= . 
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For some problems, such as reducing rational expressions, we need to write a quadratic 

trinomial having leading coefficient a and roots r and s in the factored form. The result is 

this: 

𝑎(𝑥 − 𝑟)(𝑥 − 𝑠). 

In the case when all coefficients of the quadratic trinomial are integers and roots r and s 

are rational numbers (fractions), the above factored form can be written in terms of integers. 

Example 2.8. Factor the quadratic trinomial 6𝑥2 + 5𝑥 − 4 from the left side of the 

equation in the problem 2.7. 

Solution. Here, the leading coefficient is 6, and the roots are −
4

3
 and 

1

2
. Therefore, the 

factored form is 

6 (𝑥 +
4

3
) (𝑥 −

1

2
). 

 
To write this expression using integers, we factor coefficient 6 as 3 × 2, and multiply 3 

by the first expression in parentheses, and 2 by the second. We get 

6 (𝑥 +
4

3
) (𝑥 −

1

2
) = 3 (𝑥 +

4

3
) 2 (𝑥 −

1

2
) = (3𝑥 + 4)(2𝑥 − 1). 
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Exercises 2 

In exercises 2.1 and 2.2, write the given equations as quadratic equations in standard 

form. 

Identify the coefficients a, b, and c. 
 
2.1  a)  (3 7)( 2) 0x x+ − =  

b)  2(4 3) 6x − =  

 2.2.  a)  (4 3)(2 1) 0x x− + =  

        b)  2(5 2) 3x + =  

 

In exercises 2.3 and 2.4, solve the given equations. 
 
2.3.  a)  (3 7)( 2) 0x x+ − =  

  b)  2(6 5) 0x − =  

 2.4.  a)  (4 3)(2 1) 0x x− + =  

         b)  2(7 4) 0x + =  

 

In exercises 2.5 and 2.6, solve the given equations by factoring. 
 

2.5.  a)  
23 5 0x x+ =  

  b)  
22 32 0x − =  

  c)  
2 12 0x x+ − =  

  d)  
2 10 25 0x x+ + =  

  e)  ( 4)( 3) 8x x+ − =  

 2.6.  a)  
26 7 0x x− =  

  b)  
25 45 0x − =  

  c)  
2 2 15 0x x− − =  

  d)  
2 12 36 0x x+ + =  

        e)  ( 3)( 5) 9x x+ − =  

 

In exercises 2.7 and 2.8, solve the given equations. 
 

2.7.  a)  
28 2 3 0x x− − =  

        b)  
25 12 9x x+ =  

        c)  
29 2 9x x+ =  

 2.8.  a)  
26 13 5 0x x+ − =  

         b)  
27 3 4x x+ =  

         c)  
212 2 5x x− =  

For exercises 2.9 and 2.10, write the equations from exercises 2.7 and 2.8, part b) and c), 

in the standard form. Then do exercises 2.9 and 2.10. 

2.9. Factor trinomials from the         2.10. Factor trinomials from the 

       problem 2.7 using integers.       problem 2.8 using integers. 

 

Challenge Problems 
 
2.11.  Let a and b be two positive numbers. Are the following expressions equal? If not, 

which one is bigger: 

𝑎2 + 𝑏2 or (𝑎 + 𝑏)2? 

2.12. Prove that   
𝑎2+𝑏2

2
 ≥ 𝑎𝑏. 
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2.13. Calculate the following expression mentally without using a calculator or paper. 

123452 − 123442 

2.14. Develop a method to easily calculate the following expression without using a 

calculator. 
12344 ∙ 12346 + 1

12345
 

 

2.15. Construct a quadratic equation with 

          a) roots 2 and  –3 

          b) one root 4. 

How many quadratic equations with the above roots can you construct?  

2.16. Let A and B be two real numbers. What conclusion can you make about A and B 

from the following equations? 

a) 𝐴2 + 𝐵2 = 0. 

b)  
𝐴𝐵

𝐴2+𝐵2
 = 0. 

c) 𝐴2 = 𝐵2. 

2.17. Consider quadratic equation 𝑥2 + 𝑏𝑥 + 𝑐 = 0. Assume that it has two real roots p 

and q. What numbers (positive, negative, zero, or any) can coefficients b and c be, if? 

a) p + q > 0 

    b) p + q < 0 

    c) p + q = 0 

    d) pq > 0 

    e) pq < 0 

    f) pq = 0. 

2.18. Let the quadratic equation 𝑥2 − 2𝑥 + 𝑐 = 0 has the root of 4. Find the coefficient c. 

2.19. Let the quadratic equation 𝑥2 + 𝑏𝑥 − 12 = 0 has the root of 4. Find the coefficient 

b. 
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Session 3 
 

Integer Exponents 
 

Exponential Expressions with Positive Integer Powers 
 

Let’s recall the well-known notation of multiplication. Everybody knows that 3 4 12 = . 

But what does exactly multiplication mean? Why is the result 12? We got this result by 

adding number 3 to itself 4 times: 

   3 4 3 3 3 3 12 = + + + = . 

Multiplication means repetition with addition. It allows us to write the summation of a 

number with itself in a short, compact form. 

There are cases when we need repetition with multiplication. In other words, we want to 

multiply a number by itself several times. For example, consider the product 3 3 3 3   . 

It would be a good idea to invent a special notation, similar to the notation for 

multiplication, that allows to write such a product in a short form, using the number 3 only 

one time (which tells us the number we want to multiply by itself) and number 4 (which 

tells us how many times to multiply). We cannot use the notation 43  because it is already 

taken for multiplication to express repetition with summation. The following notation was 

invented to express repetition with multiplication: 
43 . This expression is called the 

exponential expression. So, by definition 

43 3 3 3 3=    . 

Note. In some computer languages and calculators, to keep both numbers (3 and 4) on one 

line, the notation 3^4 is used. 

In similar way, we can define the exponential expression in general form: 

Definition. For arbitrary number a and arbitrary positive integer n the exponential 

expression 
na  is defined by the formula: 

       ...na a a a=     (multiply n times) 

The number a is called the base, and n is called the exponent or the power of the 

expression. We can say that we raise a to the power n. In particular, 
1a a=  (we “repeat” 

number a one time). Also, 1 1n =  for any n. For two special cases, when power n = 2 and n 

= 3, we also say that 
2a  is “a-squared”, and 

3a  is “a-cubed” respectively. The reason for 

that is 
2a  represents the area of a square, and 

3a  represents the volume of a cube with 

sides a. 

The notation of exponents is useful in many situations, in particular, when we work with 

very big numbers (for example, with distances between planets). Below we show a way in 

which exponential expressions can also be used for very small numbers (such as, for 

example, distances inside molecules or atoms). 

Let’s consider examples and study some properties of exponents. 
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Example 3.1. Some people believe that one kilobyte (KB) of computer memory is equal 

to 1000 bytes (B). However, 1 KB = 1024 B, not 1000 B. The reason is that the number 

1024 is a power of 2 but the number 1000 is not. Express number 1024 in exponential form 

with the base of 2. 

Solution. Let’s construct a table of exponential expressions with the base of 2 starting with 

the power of 5: 

Power 5 6 7 8 9 10 

Expression 25 = 32 26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024 

 
Therefore, 1024 = 210. 

Example 3.2. It is known that the distance from our Earth to the Sun is about 150,000,000 

km (150 million kilometers). Represent this distance in a short form using exponents.  

Solution. We can write this number in the form 150,000,000 1.5 100,000,000=  . The 

number 100,000,000 contains 8 zeros and can be written as 
8100,000,000 10= .  

 Therefore, 
8150,000,000 1.5 10=  . 

Note. Representation of big numbers such as in the example 3.2 in exponential form with 

the base of 10 is widely used in science. This form is called scientific notation. 

 

In general, we say that a positive number a is in scientific notation, if it is written as a 

product of two parts: 

1) A number between 1 and 10 (1 is included, but 10 is not). 

2) Power of 10. 

Example 3.3. Consider three numbers: 
815.3 10 , 

60.15 10 , and 
42.73 10 . Are these 

numbers in scientific notation? 

Solution. It may seem that all three numbers are in scientific notation. However, it is not 

true. The first number 
815.3 10  is not in scientific notation, because its first part, the 

number 15.3, is greater than 10, so it does not satisfy condition 1). The second number 
60.15 10  is also not in scientific notation, since its first part, the number 0.15, is less than 

1, so again it does not satisfy condition 1). The third number 
42.73 10  is in scientific 

notation: its first part is 2.73, which is between 1 and 10. 

Now, how about very small numbers? Consider, for example, the diameter of DNA helix. 

It is known that this diameter is about 0.0000002 cm. Is it possible somehow to represent 

this number also in a short form using exponents? The answer is yes. We will solve this 

problem in example 3.5 below. To come up with the idea how to do this we need to learn 

more about exponents. Let’s start with some basic properties. 

 

Basic Properties of Exponents 

We will not give proofs here since proofs are very simple and follow directly from the 

definition of exponents (if you wish you can try to prove yourself). We will just illustrate 

the properties with some examples. 
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Consider how we can combine the product of 
2a  and 

3a into one expression: 

( )( )2 3 5a a a a a a a a =    = . As you can see, to combine, we add powers 2 and 3, but 

not multiply them. A similar property holds according to the following general rule: 

Product Rule. For any number a, and any positive integers n and m,  

n m n ma a a + = . 

Note that both exponential expressions in this formula have the same base a. This 

restriction is very important. If, for example, you need to multiply 
4 53 2 , there is no 

simple rule to represent the answer as a single exponential expression. Also notice how 

product rule works: to multiply expressions with the same base, we add powers. A possible 

mistake here is to multiply powers instead of adding them. 

Another rule is how to raise exponential expressions into a power. Consider the expression 

( ) ( ) ( ) ( ) ( )
2

3 3 3 6a a a a a a a a a a=  =      = . This time, contrary to product rule, we 

multiply powers 3 and 2. Here is the general rule: 

Power Rule. For any number a, and any positive integers n and m, 

( )
m

n n ma a = . 

Now let’s consider an example of dividing the exponential expressions: 

6
6 2 4

2

a a a a a a a
a a a a a a a

a a a

    
 = = =    =


. 

To divide exponential expressions with the same base, we subtract powers (we do not 

divide them). The general rule is this: 

Quotient Rule. For any nonzero number a, and any positive integers n and m, such that 
n m , 

n
n m

m

a
a

a

−= . 

Note that in the above formula, the power in the numerator is greater than that in the 

denominator. But what if we need to divide expressions when the power of numerator is 

less than the power of denominator: n m ? One possible way is just to reduce this fraction 

by dividing numerator and denominator by 
na . Consider the example 

2

6 4

1 1a a a

a a a a a a a a a a a a


= = =

       
. 

In general, if n m , then 

    
1n

n m

m m n

a
a a

a a −
 = = . 

 

In the next example, we will see how to raise the product of two numbers to a power: 
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( ) ( )( )( ) ( )( )
3 3 3ab ab ab ab aaa bbb a b= = = . 

As you can see, we raise to the power 3 both numbers a and b. Here is the general rule. 

Power of Product Rule. For any two numbers a and b, and any positive integer n, 

( )
n n nab a b= . 

In similar way, if we have the quotient of numbers a and b, then to raise it to a power, we 

raise to that power both a and b, as in the following example: 

           

2 2

2

a a a aa a

b b b bb b

    
= = =    

    
. 

In general, the following rule is true. 

Power of Quotient Rule. For any number a, any nonzero b, and any positive integer n, 

n n

n

a a

b b

 
= 

 
. 

Negative Integer Exponents 
 

Let’s reconsider the Quotient Rule when the power n of the numerator is less than the 

power m of the denominator: 
1n

m m n

a

a a −
= ,  n m . It would be a good idea to somehow 

write this in the same exponential form as in the case when n m : 

n
n m

m

a
a

a

−= . In doing 

this, we come up to the expressions with negative powers! For example, we can write 

2
2 6 4

6 4

1a
a a

a a

− −= = = , or  
4

4

1
a

a

− = . 

You might say that negative exponent does not make any sense. Indeed, by the initial 

definition of exponential expressions, its power tells us how many times the base should 

be multiplied by itself. How can we multiply anything “negative number of times”? Of 

course, we cannot. However, we can get out of this situation if we simply accept by 

definition that 
4

4

1
a

a

− = . In general case, the definition of a negative exponent is similar 

to the above example for 
4a−

. 

Definition. For any nonzero number a, and for any positive integer n, we define 
na−

 as 

                                            
1n

n
a

a

− = . 

So, expressions with negative exponents are reciprocals to expressions with positive 

exponents. In particular, 
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n n
a b

b a

−

   
=   

   
. 

 

Now, let’s try to invent the definition of 
0a  (exponent is zero). 

We can use similar approach as for negative exponents, using Quotient Rule for m = n. We 

will have 
0.

n
n n

n

a
a a

a

−= =  Because 1
n

n

a

a
= , we get 

0 1.a = We come up with the 

Definition. For any nonzero number a, 
0 1.a =  

 

Example 3.4. Calculate. Write your answer as a decimal. 

  a) 
010 ,     b) 

110−
,   c)  

210−
,  d)  10 n−

 (n is a natural number). 
 
Solution. By definition, we have 

 a) 
010 1= ,         b) 

1 1
10 0.1

10

− = = ,        c)  
2

2

1 1
10 0.01

10 100

− = = = ,   

 d) 
1

10 0.0...01
10

n

n

− = =   (n – 1 zeros after the decimal point). 

 

Example 3.5. The diameter of DNA helix is about 0.0000002 cm. Represent this number 

in exponential form. 

Solution. 
70.0000002 2 0.0000001 2 10−=  =  . 

This example shows that expressions with negative exponents are useful for the 

representation of small numbers in a compact form. The above representation, as for big 

numbers, is also called scientific notation. 
 
In conclusion, consider several examples. It can be shown that all the above properties of 

expressions with positive exponents are also true for negative exponents. In all problems 

below, the question is to simplify given expression and write the answer using positive 

exponents only. We assume that all bases of exponential expression are any nonzero 

numbers.  

 Example 3.6.  

n

m

a

a−
. 

Solution. We can use the Quotient Rule: 
( )

n
n m n m

m

a
a a

a

− − +

−
= = . 

Technically, we can get the same answer as if we would “physically” move 
ma−

 from the 

denominator up to the numerator and change the negative sign of m to positive. Then we 

can use the Product Rule: 

n
n m n m

m

a
a a a

a

+

−
= = . We will use similar method in the 

following example. 

Example 3.7.  

n p

m q

a b

a b

−

−
.  
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Solution. We can get rid of negative exponent for 
ma−

 in denominator, and for 
pb−

 in 

numerator, by moving these expressions into the opposite part of the fraction: move 
ma−

 

up to the numerator and move 
pb−

 down to the denominator. Then apply the Product Rule. 

We will get 

   

n p m n m n

m q p q p q

a b a a a

a b b b b

− +

− +
= = . 

 

Example 3.8.  ( )( )5 3 1ax y bxy− −
. 

Solution. We can use Product Rule to combine 
5x−

 and x (note that x can be written as 
1x

), and combine 
3y  and 

1y−
: 

  ( )( )5 3 1 5 1 3 1 4 2ax y bxy abx y abx y− − − + − −= = . 

Now, to get rid of negative exponent 
4x−

, similar to Example  3.7, move 
4x−

down: 

2
4 2

4

aby
abx y

x

− = . 

Example 3.9.   

2
3 8

6 4

45

18

u v

u v

−
−

− −

 
 
 

. 

Solution. It is possible to simplify this expression in different ways. As а first step, let’s 

get rid of negative power 2−  by applying the definition of negative exponent: take 

reciprocal of the fraction inside parentheses: 

      

2 2
3 8 6 4

6 4 3 8

45 18

18 45

u v u v

u v u v

−
− − −

− − −

   
=   

   
. 

Next, we simplify fraction inside parentheses by reducing coefficients 18 and 45 by 9, and 

moving both exponents 
6u−

 and 
4v−

 down (it is not needed to move 
3u−

 up). Then we use 

Product Rule: 

  

2 2 2 26 4

3 8 3 6 8 4 3 6 8 4 3 12

18 2 2 2

45 5 5 5

u v

u v u u v v u v u v

− −

− − − + +

       
= = =       
      

. 

Finally, we use Power of Quotient and Power Rules: 

( ) ( )

2 2

2 23 12 3 2 12 2 6 24
2 3 12

2 2 4 4

5 25 255u v u v u vu v
 

 
= = = 

 
. 
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Exercises 3 
 

In exercises 3.1 –3.4, write the given numbers in scientific notation. 

   

3.1. The Earth's circumference 

        at the equator is 

       approximately 25,000 mi. 

 3.2. Mount Everest (on the 

         border of Nepal and 

         China) is the highest 

         place on Earth above sea 

         level, at about 29,000 ft. 

 

3.3. A tiny space inside a 

       computer chip has been 

       measured to be 

       0.000256 cm wide. 

 3.4.  A tiny space inside a 

        computer chip has been 

        measured to be 0.000014 cm 

        long. 

 

In exercises 3.5 – 3.8, write the given numbers as ordinary numbers. 

 

3.5. The length of a bacterium is 

        about 
54 10−  in.  

 3.6. The weight of a flea is 

         about 
28.75 10−  g. 

 

3.7. The diameter of the Moon is 

       
63.475 10  m.  

 3.8.   The speed of sound in dry 

         air at is 
31.236 10  km/h. 

   

In Exercises 3.9 and 3.10, the numbers are not written in scientific notation (why?). 

Write these numbers in scientific notation. 

 

3.9.  a)  
434.7 10−  

         b)  
30.25 10  

 3.10   a)  
643.8 10−  

          b)  
50.36 10  

 

In Exercises 3.11 and 3.12, calculate without calculator and write the answer without 

using of exponents. If the answer is not an integer, write it down as a fraction, not as a 

decimal. 

 

3.11.  a)  
02 3  

          b)  ( )
0

2 3  

          c)  
24−

 

          d)  
24−−  

          e)  ( )
2

4
−

−  

 3.12.  a)  
03 4  

          b)  ( )
0

3 4  

          c)  
25−

 

          d)  
25−−  

          e)  ( )
2

5
−

−  

 

In Exercises 3.13 – 3.24, simplify and write the answer using positive exponents only 

(assume that all letters represent positive numbers). 

 

3.13.  a)  
5 7a a−

 

b)  
3 6c c− −

 

 3.14.  a)  
6 3c c−

 

b)  
2 4n n− −
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          c)  ( )
2

3a
−

 

         d)  

2
m

n

−

 
− 
 

 

          c)  ( )
3

4d −
 

          d)  

3
a

b

−

 
− 
 

 

 

3.15.  a)  

8

4

p

p
 

b)  

8

4

p

p

−

 

c)  

8

4

p

p−
 

d)  

8

4

p

p

−

−
 

e)  

4

8

p

p
 

f)  

4

8

p

p−
 

g)  

4

8

p

p

−

 

h)  

4

8

p

p

−

−
 

 
3.16.  a)  

9

3

r

r
 

b)  

9

3

r

r−
 

          c)  

9

3

r

r

−

 

          d)  

9

3

r

r

−

−
 

          e)  

3

9

r

r
 

           f)  

3

9

r

r

−

 

           g)  

3

9

r

r−
 

           h)  

3

9

r

r

−

−
 

 

3.17.  

a b

c d

x y

x y

−

−  

 

3.18.  

w x

y z

p q

p q

−

−  

 

3.19  ( )( )4 2 5 3ma b na b− −
  3.20.  ( )( )5 3 7 6xu v yu v− −

 

   

3.21.  

2
6 12

2 3

35

42

r s

r s

−
−

−

 
− 
 

 

 

3.22.  

3
15 9

5 3

12

30

x y

x y

−
−

−

 
− 
 

 

   

3.23.  

3
8 14

2 7

24

16

p q

p q

−
−

−

 
− 
 

 

 

3.24.  

2
12 8

2 4

25

15

m n

m n

−
−

−

 
− 
 

 

 

Challenge Problem 

3.25.  Solve the equation (𝑥2 − 7𝑥 + 11)𝑥
2−13𝑥+42 = 1.   

 
Hint: There are six roots. To find them, consider three cases.  
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Session 4 
 

Rational Expressions and Complex Fractions 
 

Recall that a rational number is a number that can be written as a fraction of integers 

(having a numerator on the top and a denominator on the bottom). Usually, we write a 

fraction in the form 
m

n
, where m and n are two integers (m is the numerator, and n is the 

denominator and 0n  ). We treat a fraction as a ratio of its numerator to denominator, so, 

we can write 
m

m n
n
=  . We will always assume that the denominator n is not equal to 

zero. 

We consider here rational expressions. These are also fractions. However, their 

numerators and denominators are not necessarily numbers. They are expressions that are 

called polynomials. A polynomial is an expression that can be written in a form that 

contains a variable, say x, together with the operations of addition, subtraction, and 

multiplication of x by numbers and by itself. When x is multiplied by itself, (like 

,x x x x x   ,…), we usually write this as an exponential expression (like 
2 3, ,...x x ). 

Here are some examples of polynomials: 

   
3 21

3, 5 3 2, 3 7 4.
2

x x x x x− − + − +  

The last polynomial is called a quadratic trinomial (quadratic, because the highest power 

of x is 2, and trinomial, since it contains three terms). The expression  𝑥(3𝑥2 + 𝑥) is also 

a polynomial, because after distribution it can be written as 
3 23x x+ . On the contrary, 

1
3

x
+  is not a polynomial since it contains the variable x in the denominator (so, division 

by the variable) and cannot be reduced to a polynomial. 

Definition. A rational expression is a ratio of two polynomials (or a fraction whose 

numerator and denominator are polynomials). Here are several examples of rational 

expressions: 

    
2

2 3 2

5 3 2 1 3 3 2
, , , .

2 1 1 5

x x x

x x x x x

− + +
−

− − −
 

Below we consider examples on how to add and subtract rational expressions. Mostly, 

these operations can be performed in a manner similar to rational numbers (ordinary 

fractions). Where possible, we will point out the similarity between rational numbers and 

rational expressions. 
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Simplification of Rational Expressions 

When adding or subtracting, we will also simplify (if possible) resulting expressions. In 

order to simplify, we factor the numerator and denominator, and reduce (cancel out) a 

common factor, as we were doing with rational numbers (ordinary fractions). Let’s see 

some examples of simplification. 

Example 4.1. Simplify   
210 15

20

x x

x

−
. 

Solution. A possible mistake here is to cancel x from 15x (in the numerator) and 20x (in 

the denominator), resulting in a wrong answer 
2(10 15) / 20x − . As we mentioned above, 

the possible correct way is to factor the numerator before reducing. We can factor out 5x 

from the numerator and then reduce: 

210 15 5 (2 3) 5 (2 3) 2 3

20 20 5 4 4

x x x x x x x

x x x

− − − −
= = =


. 

Example 4.2. Simplify   
216 12

6 10

x x

x

+

−
. 

Solution. Here we can factor out both the numerator and denominator and then reduce 

(divide the numerator and denominator) by 2: 

216 12 4 (4 3) 2 (4 3)

6 10 2(3 5) 3 5

x x x x x x

x x x

+ + +
= =

− − −
. 

 

Example 4.3. Simplify   
2

2

5 30 40

3 3 18

x x

x x

+ +

− −
. 

Solution. As in the previous problem, we start with the factoring of the numerator and the 

denominator. We can factor them in two steps. First, factor out 5 from the numerator and 

3 from the denominator: 

     
2 2

2 2

5 30 40 5( 6 8)

3 3 18 3( 6)

x x x x

x x x x

+ + + +
=

− − − −
. 

The second step is to factor the quadratic trinomials inside the parentheses:   

2 6 8 ( 2)( 4)x x x x x+ + = + +  and 
2 6 ( 2)( 3)x x x x− − = + − . 

We can complete the factorization and then reduce (cancel) the common factor x+ 2:  

           
5(x2 +6x+8)

3(x2 - x -6)
=

5(x+ 2)(x+ 4)

3(x+ 2)(x-3)
=

5(x+ 4)

3(x-3)
. 
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Addition and Subtraction of Rational Expressions 

Example 4.4. Add   
5 3

2 1 2 1

x

x x
+

− −
. 

Solution. Recall that it is very easy to add (or subtract) numerical fractions if they have the 

same denominator: just add (or subtract) numerators and keep (do not add or subtract) their 

common denominator. For example, 
2 3 5 5 7 2

, .
7 7 7 9 9 9
+ = − = −  

The same rule applies to rational expressions. For given example, 

           
5 3 5 3

2 1 2 1 2 1

x x

x x x

+
+ =

− − −
. 

Example 4.5. Subtract   
3 4 2

8 6

a a+ −
− . 

Solution. This time the denominators are different. Recall how we would subtract rational 

numbers (fractions), let’s say  
7 5

8 6
− . 

To subtract, we replace these fractions with equivalent ones having the same denominator, 

which is called the LCD (Least Common Denominator). LCD is the smallest number that 

is divisible by both denominators. Technically, we can subtract fractions in three steps. 

1) Find the LCD. For given denominators 8 and 6, the LCD = 24. We put the LCD into the 

denominator of the resulting fraction. 

 2) Find the complements of each denominator to the LCD. A complement is the number 

such that if we multiply it by the denominator, we get the LCD. To find complements, just 

divide the LCD by each denominator. For the denominator 8, the complement is 3 

( 3824 = ), and for the denominator 6, the complement is 4 ( 4624 = ). 

3) Calculate the numerator of the resulting fraction: multiply numerator of each fraction by 

the complement to its denominator and subtract the results. For the given fractions 7/8 and 

5/6, multiply the numerator 7 by 3 (complement to the denominator 8), and the numerator 

5 by 4 (complement to the denominator 6): 

                                        
7 5 7 3 5 4 21 20 1

8 6 24 24 24

 −  −
− = = = . 

To subtract rational expressions, we do the same thing: 

        
3 4 2 (3 4)3 ( 2)4 9 12 4 8 5 20

8 6 24 24 24

a a a a a a a+ − + − − + − + +
− = = = . 

Now consider an example when the denominators are different and contain variables. 
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Example 4.6. Add   
3 4

10 15x y
+ . 

Solution. As before, we first construct the LCD. The denominators contain both numbers 

and letters. Therefore, the LCD consists of two parts: numerical part and letter part. For the 

numbers 10 and 15, the numerical part of the LCD is 30. The letters x and y do not have 

common factors. Therefore, the letter part of the LCD is their product xy. The entire LCD 

is the product of the numerical and letter parts: 

  LCD = 30xy. 

Next, we find complements of each denominator to the LCD by dividing the LCD by 

denominators. 

For the denominator 10x, the complement is 30xy/10x = 3y. 

For the denominator 15y, the complement is 30xy/15y = 2x. 

 Finally, we add the given fractions: 

                      
3 4 3 3 4 2 9 8

.
10 15 30 30

y x y x

x y xy xy

 +  +
+ = =  

Example 4.7. Combine   
2

5 11 9

6 14a a
− + . 

Solution. To construct the LCD, similarly to the previous example, we construct separately 

its numerical and letter parts. 

For the numbers 6 and 14 in denominators, the numerical part of the LCD is 42. 

For the letters 2a  and a, the letter part of the LCD is 2a . 

The entire LCD is the product of both parts: LCD = 242a . 

Next, we find complements for each denominator to the LCD: 

For 2a , the complement is 2 242 / 42a a = . 

For 6a, the complement is 242 / 6 7a a a= . 

For 14, the complement is 2 242 /14 3a a= . 
From here, 

  
2 2

2 2 2

5 11 9 5 42 11 7 9 3 210 77 27
.

6 14 42 42

a a a a

a a a a

 −  +  − +
− + = =  

Note. In general, if the denominators contain exponential expressions with the same base 

and different powers, include into the LCD the expression with the biggest power. Thus, 

in the previous example, for the expressions 
2a  and a in the denominators we have 

included 
2a into the LCD. 

If denominators do not contain common factors, include into the LCD the product of both 

denominators. 
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Example 4.8. Subtract   
4 2

5 3 3 5x x
−

− −
. 

Solution. The denominators 5 3x −  and 3 5x −  do not have common factors, therefore, 

the LCD is simply their product: 

                             LCD (5 3)(3 5)x x= − − . 

The denominators 5 3x −  and 3 5x −  are complemented to each other, therefore 

4 2 4(3 5) 2(5 3) 12 20 10 6 2 14

5 3 3 5 (5 3)(3 5) (5 3)(3 5) (5 3)(3 5)

x x x x x

x x x x x x x x

− − − − − + −
− = = =

− − − − − − − −
. 

 

Example 4.9. Subtract   
5 5

6 6

y y

y y

− +
−

− −
. 

Solution. Notice that the denominators of these fractions are “almost the same” (they differ 

only in signs and the order of terms). We can make them exactly the same by using the 

following connection between expressions a b−  and b a− : 

    ( )a b b a− = − − . 

Thus, 6 ( 6)y y− = − −  and 

  
5 5 5 5 5 5 2

6 6 6 ( 6) 6 6 6

y y y y y y y

y y y y y y y

− + − + − +
− = − = + =

− − − − − − − −
. 

Example 4.10. Add   
7

4
3x
+

−
. 

Solution. We can treat the integer 4 as a fraction with the denominator 1: 
4

4 .
1

=  

From here, the LCD of the denominators 3x −  and 1 is 3x − , and these denominators are 

complemented to each other. Therefore, 

       
7 7 4 7 1 4( 3) 7 4 12 4 5

4
3 3 1 3 3 3

x x x

x x x x x

 + − + − −
+ = + = = =

− − − − −
. 

Example 4.11. Add   
2

5 3
.

4 2 4

x

x x
+

− −
 

Solution. At the first glance, it might seem that the denominators 2 4x −  and 2 4x −  do 

not have common factors. However, they do! To see that, factor both. It is easy to factor 

the denominator 2 4x −  by factoring the number 2: 2 4 2( 2).x x− = − The denominator 
2 4x −  can be factored using the formula for the difference of two squares: 

2 2 ( )( )a b a b a b− = − + . 
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From here, 
2 4 ( 2)( 2).x x x− = − +  Now, compare the denominators in the factored form: 

2( 2)x −  and  ( 2)( 2).x x− +  

 We see the common factor 2x − . This is a part of the LCD. Also, we put the other factors 

2 and 2x +  into the LCD. Therefore, the entire LCD 2( 2)( 2)x x= − + . Next, we find the 

complements for each denominator: 

For 2 4 ( 2)( 2),x x x− = − +  the complement is 2. 

For 2 4 2( 2),x x− = −  the complement is 2x + . 

Finally, we add the fractions: 

2

5 3 5 2 3( 2) 10 3 6 13 6

4 2 4 2( 2)( 2) 2( 2)( 2) 2( 2)( 2)

x x x x x x

x x x x x x x x

 + + + + +
+ = = =

− − − + − + − +
. 

Example 4.12. Subtract  
2 2

7 5

12 6x x x x
−

− − + −
. 

Solution. Again, as a first step, we factor each denominator: 

2 12 ( 3)( 4)x x x x− − = + −  and 
2 6 ( 3)( 2)x x x x+ − = + − . 

Now, to construct the LCD, we multiply all factors from both denominators (taking the 

common factor 3x + only one time): 

   LCD = (x + 3)(x – 4)(x – 2). 

Next, using the LCD, we find the complements of each denominator. 

 For 2 12 ( 3)( 4)x x x x− − = + − , the complement is x – 2. 

 For 2 6 ( 3)( 2)x x x x+ − = + − , the complement is x – 4. 

Finally, we subtract the given fractions: 

2 2

7 5 7( 2) 5( 4)

12 6 ( 3)( 4)( 2)

x x

x x x x x x x

− − −
− =

− − + − + − −
 

= 
7 14 5 20 2 6

( 3)( 4)( 2) ( 3)( 4)( 2)

x x x

x x x x x x

− − + +
=

+ − − + − −
. 

We can simplify the last expression even more by factoring the numerator 2x + 6 as  

2( 3)x +  and then canceling the factor x + 3 from the numerator and the denominator: 

2 6 2( 3) 2

( 3)( 4)( 2) ( 3)( 4)( 2) ( 4)( 2)

x x

x x x x x x x x

+ +
= =

+ − − + − − − −
. 
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Example 4.13. Combine   
2

2

6

4

124

3
2 +

−
−

+
−− aaaa

. 

Solution. Factor the first denominator: 

)2)(6(1242 +−=−− aaaa . 

The factors a – 6 and a + 2 are the denominators of the second and the third fractions, so 

   LCD = (a – 6)(a + 2). 

Since the LCD coincides with the first denominator, the complement of this is 1, and we 

need to find complements only for the second (a – 6) and the third (a + 2) denominators. 

   For a – 6, the complement is a + 2. 

   For a + 2, the complement is a – 6. 

From here  

)2)(6(

)6(2)2(43

2

2

6

4

124

3
2 +−

−−++
=

+
−

−
+

−− aa

aa

aaaa
 

= 
)2)(6(

232

)2)(6(

122843

+−

+
=

+−

+−++

aa

a

aa

aa
. 

 

Complex Fractions 
 
Complex fractions are fractions that contain other fractions in their numerators and/or 

denominators. We will call fractions inside a complex fraction inner ones. For example, 

fractions 
a

b
 and 

c

d
 are inner fractions in the complex fraction: 

a

b
c

d

We will consider 

methods on how to simplify complex fractions. 

Example 4.14. Simplify   
2

7

15
14

27

ab

ab

. 

Solution. We can represent this complex fraction in the form of division of its numerator 

by its denominator: 
abab 27

14

15

7
2
 . Now we use the rule for division of fractions: multiply 

the first fraction by the reciprocal of the second: 
14

27

15

7
2

ab

ab
 . After simplification 

(reducing) we get the final answer 
b10

9
. 
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Note. Working with complex fractions, it is important not to confuse those that look 

similar, but are actually different. We need to carefully identify the position of the “main” 

(longest) fraction line. This line shows the place where we divide numerator by 

denominator. For example, compare the following complex fractions (which have different 

“longest” lines): 

 

 

                                       

 

As you see, these fractions are different. 

In the examples below, to simplify complex fractions, we use two methods. 

First method: find the LCD for all inner fractions contained in the numerator and the 

denominator of the complex fraction, and then multiply the numerator and the denominator 

of the complex fraction by this LCD. 

Second method: simplify the numerator and the denominator of a complex fraction 

separately, and then divide its numerator by the denominator. 

Example 4.15. Simplify   

12

7

15

4
6

5

3

2

+

−
. 

Solution.  

First method. The denominators of the four inner fractions are 3, 6, 15, and 12. Their LCD 

is 60. Multiply the numerator and denominator of the complex fraction by this LCD: 

51

10

51

10

3516

5040

12

7
60

15

4
60

6

5
60

3

2
60

12

7

15

4
60

6

5

3

2
60

−=
−

=
+

−
=

+

−

=









+









−

. 

Second method. Simplify the numerator and denominator separately: 

  
6

1

6

522

6

5

3

2
−=

−
=− ,      

60

51

60

5744

12

7

15

4
=

+
=+ . 

Then divide numerator by denominator: 
51

10

51

60

6

1

60

51

6

1
−=−=− . 

Example 4.16. Simplify   

22

2

45

23

xxy

xyyx

−

+

. 

.
b

ac

b

c
a

c

b
a ===  

     a    

b

c

a

b

c
.

1

bc

a

cb

a
c

b

a
===  
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Solution. 

First method. The denominators of the four inner fractions are 22 ,, xyxyyx , and 2x . 

Their LCD is 22 yx . Multiply the numerator and the denominator of the above complex 

fraction by this LCD: 

2

2

22

2

22

22

2

22

22

22

2

22

45

23

45

23

45

23

yx

xyy

x

yx

xy

yx

xy

yx

yx

yx

xxy
yx

xyyx
yx

−

+
=

−

+

=









−









+

. 

Second method. 

Add inner fractions in the numerator: 
yx

x

xyyx 22

2323 +
=+ . 

Subtract inner fractions in the denominator: 
22

2

22

4545

yx

yx

xxy

−
=− . 

Divide numerator by denominator: 

222

22

222

2

2 45

23

45

)23(

45

234523

yx

xyy

yx

yx

yx

yx

yx

x

yx

yx

yx

x

−

+
=

−

+
=

−


+
=

−


+
. 

Example 4.17. Simplify   

2

3
7

2

5
6

−
+

−
−

n

n . 

Solution. 

First method. The LCD of the inner denominators is n – 2. Multiply the numerator and 

denominator of the complex fraction by n – 2: 

117

176

3147

5126

3)2(7

5)2(6

2

3
7)2(

2

5
6)2(

2

3
7

2

5
6

−

−
=

+−

−−
=

+−

−−
=










−
+−










−
−−

=

−
+

−
−

n

n

n

n

n

n

n
n

n
n

n

n
. 

Second method. 

Combine the numerator: 
2

176

2

5)2(6

2

5
6

−

−
=

−

−−
=

−
−

n

n

n

n

n
. 
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Combine the denominator: 

                                     
2

117

2

3147

2

3)2(7

2

3
7

−

−
=

−

+−
=

−

+−
=

−
+

n

n

n

n

n

n

n
. 

Divide numerator by denominator: 

                
117

176

117

2

2

176

2

117

2

176

−

−
=

−

−


−

−
=

−

−


−

−

n

n

n

n

n

n

n

n

n

n
. 
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Exercises 4 
 
In exercises 4.1 – 4.8, simplify the given expressions. 

4.1.  
218 12

15

y y

y

−
 

 
4.2.  

224 16

14

z z

z

−
 

 

4.3.  
215 25

10 30

z z

z

+

−
 

 
4.4.  

212 18

9 15

y y

y

+

−
 

 

4.5.  
2

2

4 8 60

6 6 72

x x

x x

+ −

+ −
 

 
4.6.  

2

2

6 24 72

8 40 48

x x

x x

+ −

+ −
 

 

4.7.  
2

2

2 6 56

7 49

x x

x x

− −

−
 

 
4.8.  

2

2

3 3 36

4 16

x x

x x

− −

−
 

 
4.9.  Add and simplify 

      
6 4

3 2 3 2

x

x x
+

+ +
 

 4.10.  Add and simplify 

        
10 2

5 1 5 1

x

x x
+

+ +
 

 
4.11.  Subtract 

        
4 3 3

12 18

m m+ −
−  

 4.12.  Subtract 

         
2 5 4

10 12

n n+ −
−  

 
4.13.  Add 

        
5 7

8 12x y
+  

 4.14.  Add 

        
7 3

6 8x y
+  

 
4.15.  Combine 

        
2

4 5 7

15 3 6x x
− +  

 4.16.  Combine 

        
2

5 7 3

12 6 8x x
− +  

 
4.17.  Subtract 

        
3 5

4 7 7 4x x
−

− −
 

 4.18.  Subtract 

        
6 7

3 4 4 3x x
−

− −
 

 
4.19.  Subtract 

        
2 2

4 4

a a

a a

− +
−

− −
 

 4.20.  Subtract 

        
4 4

5 5

b b

b b

− +
−

− −
 

4.21.  Add    
6

3
2x
+

−
 

 
4.22.  Add   

8
2

4x
+

−
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4.23.  Add and simplify 

         
2

2 3 1

5 25 25

x x

x x

− +
+

+ −
 

 4.24.  Add and simplify 

          
2

4 2 3

16 4 16

x x

x x

+ −
+

− +
 

 
4.25.  Subtract and simplify 

   
2 2

3 1

7 10 5 6x x x x
−

+ + + +
 

 4.26.  Subtract and simplify 

2 2

6 5

4 5 3 4x x x x
−

+ − + −
 

 
4.27.  Combine and simplify 

2

5 3 3

2 8 4 2b b b b
+ −

+ − + −
 

 4.28.  Combine and simplify 

2

7 4 4

2 15 3 5c c c c
− +

+ − − +
 

In exercises 4.29 – 4.48, simplify the complex fractions. 
 

4.29.  
3

2

5

12
15

16

c d

cd

 

 

4.30.  
6

3 2

18

5
6

25

m n

m n

 

 

4.31. 
2

2

3 2

4 5
x x

x x

+

−

 

 

4.32. 
2

2

2 3

5 4
x x

x x

−

+

 

 

4.33. 

7

5
3

2 10

x

x

x

+

+

 

 

4.34. 

5

7
4

3 21

x

x

x

−

−

 

 

4.35.   

2 3

5 4
7 1

10 2

−

+

 

 

4.36.   

5 7

6 8
3 2

4 3

+

−

 

 

4.37.   
2

2 2

4 3

6 2

xy xy

x y y

+

−

 

 

4.38.   
2

2 2

6 5

4 3

xy x y

x xy

−

+

 

4.39.    

5
6

2
5

2
6

x

x

−

−

 

 

4.40.    

7
12

2

7
3

8

y

y

−

−
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4.41.  

7
4

3
5

6
3

k

k

−
−

+
−

 

 

4.42.  

8
5

4
6

7
4

m

m

+
−

−
−

 

 

4.43.  
2

2

1 2
1

6 8
1

x x

x x

+ −

+ +

 

 

 

4.44.  
2

2

2 3
1

5 6
1

x x

x x

+ −

+ +

 

 
 

4. 45.  

2
𝑥 +

3
𝑥 + 4

7
𝑥 + 4 −

2
𝑥

                                                                               4.46.  

3
𝑥 +

4
𝑥 + 2

9
𝑥 + 2 −

2
𝑥

  

4. 47.  

𝑎
𝑥 +

𝑏
𝑥 + 𝑐

𝑑
𝑥 + 𝑐 −

𝑒
𝑥

                                                                               4.48.  

𝑎
𝑥 − 𝑏

−
𝑐
𝑥

𝑑
𝑥 +

𝑒
𝑥 − 𝑏

  

Challenge Problems 

4.49.  Let 
A a

B b
= . Prove that 

( )( )2 2

A B A B

x ax x bx x a x b

−
− =

− − − −
. 

4.50. Let 𝑑 = 𝑏𝑐 − 2𝑎 − 2𝑏. Prove that 

𝑥 − 𝑎

𝑏𝑥 + 𝑏2
+

𝑐𝑥 + 𝑑

𝑥2 − 𝑏2
=

𝑥 + 𝑎 + 𝑑

𝑏(𝑥 − 𝑏)
. 

4.51. Let 𝑏 = 𝑐𝑑 − 𝑐𝑒 − 𝑎𝑏. Prove that 

                                                   
𝑎𝑥 + 𝑏

𝑐𝑥 − 𝑐𝑑
−

𝑥 − 𝑒

𝑥 − 𝑑
=

𝑎 − 𝑐

𝑐
. 

4.52. Let 𝑑 = 𝑏(2𝑎 − 2𝑏 + 𝑐). Prove that 

𝑥 + 𝑎

𝑥 + 𝑏
+

𝑐𝑥 + 𝑑

𝑥2 − 𝑏2
=

𝑥 + 𝑎 + 𝑐 − 2𝑏

𝑥 − 𝑏
. 

 
4.53. Let a, b, and c be natural numbers such that c is not equal to 1. Compare the values 

                                                 and                  

 

         Are they equal? If not, which one is bigger? 
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Session 5 
 

Rational Equations 
 

In the previous session, we worked with rational expressions. In this session we will work 

with rational (fractional) equations. Both sides of such equations are sums or differences 

of rational expressions. Here is an example: 
5 3 7

4 4 6

x x+ −
= − . Below we solve this 

equation by reducing it to an equation with no fractions. As with expressions, we will use 

the LCD to do this. However, the main technical difference here is that we must keep the 

LCD in the expression (and write it in the denominator of the answer), while we can drop 

the LCD in an equation. 

The reason why we can drop the denominator is this. When keeping the LCD (as we do 

with expressions), both sides of the equation become fractions with the same denominator 

(which is the LCD). If two fractions are equal and have the same denominator, then their 

numerators are also equal, so we equate numerators and drop denominators. Here is a 

simple example: 
5

4 4

x
= . Form here we conclude that x = 5. So, technically, we drop the 

common denominator 4 and equate the numerators. 

Example 5.1. Solve the equation 
5 3 7

4 4 6

x x+ −
= − . 

Solution. The first step is the same as for expressions: find the LCD. For the denominators 

4 and 6, the LCD = 12 (notice that the number 24 is also common denominator but not the 

least). The second step is also the same: find complements for each denominator to the 

LCD. 

For the denominator 4, the complement is 3, 

For the denominator 6, the complement is 2. 

 The third step is again the same: multiply each numerator by the corresponding 

complement. But now, unlike what we did with expressions, we may drop all 
denominators! As a result, the original equation becomes an equation with no fractions: 

3( 5) 3 3 2( 7)x x+ =  − − . 

Now it is easy to solve it: 

    3 3 5 3 3 2 2 7 3 15 9 2 14 3 15 23 2x x x x x x+  =  − +   + = − +  + = − . 

From this point we collect all terms with the variable x on the left side, and all other terms 

(numbers) on the right side by using the moving method: 

 
8

3 2 23 15 5 8
5

x x x x+ = −  =  = . 

Next, we consider equations in which denominators contain a variable. The technique here 

is the same. The only additional (and very important) thing is that we need to check that 
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the final answer does not cause any denominator of the original equation to become zero. 

If this happens, we must reject such a solution. 

Example 5.2. Solve the equation 
2 1 11

7 6 14x x
+ = . 

Solution. For the denominators 7x, 6 and 14x, the LCD = 42x. Next, we find complements 

for each denominator to the LCD: 

  For 7x, the complement is 6. 

  For 6, the complement is 7x. 

  For 14x, the complement is 3. 

We multiply each numerator by its corresponding complement and drop the LCD. The 

equation becomes free of fractions: 

2 6 1 7 11 3x +  =   
Now we solve this equation: 

          12 7 33 7 33 12 7 21 3x x x x+ =  = −  =  = . 

None of the denominators of the original equation is zero for this value of x, so x = 3 is the 

final answer. 

Example 5.3. Solve the equation 
3 5

4 5 5

x

x x
+ =

− −
. 

Solution. For the denominators 4 and x – 5, the LCD = 4(x – 5). 

Complements for denominators to the LCD are: 

   For 4, the complement is x – 5. 

   For x – 5, the complement is 4. 

The equation becomes 

3( 5) 5 4 4x x− +  = . 

We solve it: 

   3 15 20 4 3 5 4 3 4 5x x x x x x− + =  + =  − = − , 

   5 5x x− = −  = . 

For x = 5, the denominator x – 5 becomes zero, so we reject the value x = 5. Because this 

is the only possible solution, the original equation has no solution at all. 

Example 5.4. Solve the equation 
2

3 4 3

2 16 2 8

x

x x
+ =

− −
. 

Solution.  

1) To find the LCD, factor the second and third denominators. 

Second denominator: 

   
2 16 ( 4)( 4)x x x− = − + . 

Third denominator: 
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2 8 2( 4)x x− = − . 

The LCD of all three denominators is  2( 4)( 4)x x− + . 

2) Find the complement for each denominator to LCD: 

For 2, the complement is 2( 4)( 4) 16x x x− + = − . 

For 2 16 ( 4)( 4)x x x− = − + , the complement is 2. 

For  2 8 2( 4)x x− = − , the complement is  4x + . 

3) Multiply each numerator of the original equation by the corresponding complement 

and drop the denominator. The equation becomes 

23( 16) 4 2 3 ( 4)x x x− +  = + . 

4) Solve the above equation: 

2 2 2 23 3 16 4 2 3 3 4 3 48 8 3 12x x x x x x−  +  = +   − + = + , 

2 2 40 10
3 3 12 48 8 12 40

12 3
x x x x x− − = −  − =  = − = − . 

5) Looking at the denominators of the original equation, you may see that none of the 

denominators is zero if 
10

3
x = −  and this is the solution. 

Example 5.5. Solve the equation 
2

1 18

3 2 6

x x

x x x x

−
+ =

− + − −
. 

Solution.  

1) To find the LCD, factor the third denominator: 
2 6 ( 3)( 2)x x x x− − = − + . You may 

notice that the first factor x – 3 is the denominator of the first fraction, and the second 

factor x + 2 is the denominator of the second fraction, so 
2LCD 6 ( 3)( 2)x x x x= − − = − + . 

2) Find the complement for each denominator to the LCD: 

For x – 3, the complement is x + 2. 

For x + 2, the complement is x – 3. 

For 2 6x x− −  the complement is 1. 

3) Multiply each numerator of the original equation by the corresponding complement 

and drop the denominator. The equation becomes 

( 2) 1 ( 3) 18x x x x+ +  − = − . 

4) Solve the above equation: 

       2 22 3 18 3 3 18x x x x x x x+ + − = −  + − = − , 

2 23 3 18 0 4 21 0x x x x x+ − − + =  + − = . 

 The last equation is a quadratic equation. We can solve it by factoring: 
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    ( 7)( 3) 0 7x x x+ − =  = −  and 3x = . 

5) Check whether these numbers make any of the denominators of the original equation 

zero. The number  –7 does not, but 3 does, so we must reject the number 3. 

Final answer: the original equation has only one solution x = –7.  

Example 5.6. Solve the equation 
2

3 2 6

4 20 3 2 15n n n n
− =

+ − + −
. 

Solution.  

1) To find LCD, first we factor denominators, which are factorable. It is possible to factor 

the first and third denominators: 

4 20 4( 5)n n+ = + and  2 2 15 ( 5)( 3)n n n n+ − = + − . 

2) Now we construct the LCD by multiplying all of the above factors (taking the common 

factor n + 5 only one time): 

LCD 4( 5)( 3)n n= + − . 

3) Find the complement for each denominator to the LCD: 

For 4 20 4( 5)n n+ = + , the complement is n – 3. 

For  n – 3, the complement is 4( 5) 4 20n n+ = + . 

For 2 2 15 ( 5)( 3)n n n n+ − = + − , the complement is 4. 

4) Multiply each numerator of the original equation by the corresponding complement 

and drop the denominator. The equation becomes 

3( 3) 2(4 20) 6 4n n− − + =  . 

5) Solve the above equation: 

3 9 8 40 24 5 49 24 5 24 49n n n n− − − =  − − =  − = + , 

73
5 73

5
n n− =  = − . 

6) None of the denominators of the original equation is zero for this value of n (check this 

yourself); so, it is the solution. 

In conclusion consider an equation that has the form of equality of two fractions. Such an 

equation is called a proportion. Of course, it can be solved in the same way as before, using 

LCD. In some cases, it is more convenient to use an important property of proportion: the 

cross-multiplication rule. This rule means the following: 

if 
a c

b d
=  then  ad bc= . 

In words: the product along one diagonal (a times d) is equal to the product along another 

diagonal (b times c). 
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Example 5.7. Solve the equation 
5 2

2 4 3 5x x
=

− +
. 

Solution. The equation is written in the form of a proportion, and we can use the cross-

multiplication rule. We have 

5(3 5) 2(2 4)x x+ = − , 

15 25 4 8 15 4 8 25 11 33 3x x x x x x+ = −  − = − −  = −  = − . 

None of the denominators of the original equation is zero for this value of x, so the final 

answer is x = – 3. 

50



 

Session 5: Rational Equations 

Exercises 5 
 

In exercises 5.1 – 5.20, solve the given equations. 

 

5.1.  
2 5 3

8 8 6

x x− +
= −  

 
5.2.  

2 7 5

6 6 9

x x+ −
= −  

 

5.3.  
2 3 5

4 4 6x x
+ =  

 
5.4.  

7 5 3

8 12 8x x
+ =  

 

5.5.  
8 3

3
4 4x x
− =

− −
 

 
5.6.  

9 5
4

6 6x x
− =

− −
 

 

5.7.  
7 5

2
4 3x
+ =

−
 

 
5.8.  

7 6
4

2 5x
+ =

−
 

 

5.9.  
3 7 6

4x x x
− =

−
 

 
5.10. 

7 3 2

5x x x
− =

−
 

 

5.11. 
2

2 4
2

9 9

x

x x x
− =

− −
 

 
5.12. 

2

3 2
3

4 4

x

x x x
− =

− −
 

 

5.13.  
2

4 7 4

5 9 5 15

x

x x
+ =

− −
 

 
5.14.  

2

5 6 5

7 4 7 14

x

x x
+ =

− +
 

 

5.15.   

    
2

1 40

4 5 20

x x

x x x x

−
+ =

− + + −
 

 5.16.   

    
2

1 30

6 2 8 12

x x

x x x x

−
+ =

− − − +
 

 

5.17. 

2

9 4 7

5 15 2 6m m m m
− =

+ − + −
 

 5.18. 

2

8 5 7

3 12 3 12m m m m
− =

+ − + −
 

 

5.19.  
2 3

7 9 4 6x x
=

− +
 

 
5.20.  

4 7

5 3 8 3x x
=

+ −
 

 

 

Challenge Problems 
 

5.21. Consider the equation 

1

( )( )

x a b

x a x b x a x b

−
+ =

+ + + +
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         Prove the following statements 

a) If 1a =  or 1b = , then the equation does not have solutions. 

b) If 1a   and 1b  , then the equation has the only solution 1x = − . 

5.22. Consider the equation 

1 ( )

( )( )

x a a b

x a x b x a x b

−
+ =

+ + + +
 

         Prove the following statements 

a) If 1a =  or 2 1b a= − , then the equation does not have solutions. 

b) If 1a   and 2 1b a − , then the equation has the only solution 1x a b= − − . 

5.23. Consider the equation 

1 2

( )( )

x a b x

x a x b x a x b

− −
+ =

+ + + +
 

         Prove the following statements 

a) If 2a =  or 2b = , then the equation does not have solutions. 

b) If 2a   and 2b  , then the equation has the only solution 2x = − . 

5.24. Consider the equation 

1 ( 1)

( )( )

x a a b x

x a x b x a x b

− − −
+ =

+ + + +
 

         Prove the following statements 

a) If 2a =  or 2 2b a= − , then the equation does not have solutions. 

b) If 2a   and 2 2b a − , then the equation has the only solution 

2x a b= − − . 

In problems 5.25 – 5.28, you may use the following  

Hint: m grams of a% solution contains 
100

ma
 grams of pure substance. 

5.25.  A solution of antifreeze contains 20% alcohol. How much pure alcohol must be 

added to 6 gallons of the solution to make a 40% solution? 
 
5.26.  How many gallons of a 15% sugar solution must be mixed with 6 gallons of a 40% 

sugar solution to make a 30% sugar solution? 
 
5.27.  A chemist mixed 4 liters of 18% acid solution with 8 liters of 45% acid solution 

           What percent of acid is in the mixture? 
 
5.28.  Nick mixed 9 oz of apple drink with  8 oz of 48% carrot drink. Find the percent of 

pure apple juice in the apple drink if the mixture contained 30% fruit juice. 
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Session 6 
 

Radicals and Fractional Exponents 
 

Definition of Radicals 

Suppose we want to construct a box in the shape of a cube having the volume of 8 
3cm . 

The problem is to find its dimensions (i.e. the length of its edges). If we denote this length 

by x, then the volume is 
3x . So, to find x, we need to solve the equation 83 =x . Perhaps 

you already recognized that 
32 8= , so x = 2 cm is the solution. But what if the volume of 

a cube is 6? In this case we need to solve the equation 
3 6x = . Similar equations may appear 

in different problems, and we need a way to refer to numbers that their cubes (or other 

powers) are equal to given numbers. It would be a good idea to invent a special notation 

for their solutions. Let’s consider more general equation axn = , in which a and n are given 

(here n is a natural number), and we need to find x. The following symbol was invented to 

describe the solution of this equation: n . This symbol is called the radical or n-th root 

or root of the degree n. Using it, the solution of the equation axn =  can be written as 

n ax = , so ( )
n

n a a= . We may say that to find x, we take the 
thn  root of the number a. 

The number n is called the degree or order of the root.  For example, we can read 3 8  as 

“root of the 3rd order of 8”, or “3rd root of 8”, or “cube root of 8” (based on the above 

example with the volume of a cube). By definition, 3 8 2= . For the solution of the equation 
3 6x = , we write 3 6x = . 

Note. One might think that 3 6  does not exist. However, this is true only if we think about 

integers. Actually, the number 3 6  exists, but it is neither an integer nor a fraction (rational 

number). The existence of this number is clearly seen if we want to find the length of a side 

for a cube with the volume is 6 (such cube exists, so its sides have some length). Numbers 

like 3 6  are called irrational numbers and they cannot be written as fractions. If we want 

to find such a number as a decimal, we can only get its approximation accurate to a certain 

number of digits after decimal point. For example, using a calculator, we can find that  
3 6 1.8  or 3 6 1.82  and so on. Simple expression 3 6  replaces all possible 

approximations with any number of digits, and we say that this is the “exact value”. 

The case when the degree is n = 2 is of special interest as it appears most often. For 

example, assume that we want to construct a square with the area of 9, and we are interested 

in the length of its side. If we denote this length by x, then the area is 
2x . To find x, we 

need to solve the equation 92 =x . And the solution is 392 ==x . It is the convention to 

drop number 2 in the radical 2 , and we simply write . So, 39 = . We read the 

expression 9  as “radical 9” or “square root of 9” (based on the example with the area of 

a square). 

Note. Formally (algebraically) speaking, the equation 92 =x  has two solutions: 3=x  and 
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3−=x  since the square of both numbers is 9. However, by definition, the radical  

always refers to a nonnegative number, so 39 = , not –3. Both solutions of the equation 

92 =x  can be written as 39 ==x  and .39 −=−=x   

Similarly, if a is a nonnegative number, by n a  we always mean a nonnegative number. 

Note. If we have the expression 2x  and is it not given that x is a nonnegative number, 

we may not always write that 2x x=  since this equality is wrong when x is negative. In 

this case 2x x= −  (note that x−  is positive if x is negative). For example, 

( ) ( )
2

3 3 3− = − − = . The correct equality, which is true for any x, is this: 

2x x= , 

where x  is the absolute value of x. In the above example, ( )
2

3 3 3− = − = . In most parts 

of this textbook, we will assume that variables (letters) are nonnegative numbers, so we 

will omit absolute values. 

Now, let’s give the formal definition of the 
thn  root. 

Definition. Let a be a nonnegative number, and n be a natural number (positive integer). 

Then the 
thn  root of a, denoted by n a , is the nonnegative solution of the equation 

axn = . 

In other words, n a  is the nonnegative number whose nth power is a: 

( )
n

n a a= . 

Number a, which is inside the radical n , is called the radicand. 

Note. We defined n a  only for nonnegative a. But what if a is a negative? In this case, we 

can also define n a , but only if the degree n is an odd number. For example, 283 −=− , 

since 8)2( 3 −=− . If n is even and a is negative, then 
thn  root n a  does not exist as a real 

number. For example, 9−  does not exist because there is no (real) number x such that 

92 −=x . 

If the square root of a number is an integer, we call such number a perfect square. For 

example, 9 is a perfect square, but 8 is not. To get a list of all perfect squares, we can take 

a list of integers 0, 1, 2, 3, …., and square these numbers. We will get the list of perfect 

squares:  0, 1, 4, 9, …  

 

Properties of Radicals  

Similar to exponential expressions, we can multiply and divide radical expressions with 

the same degree very easily. We will assume in this session that a and b are any nonnegative 
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numbers, and n is any positive integer. 

Product Rule:     nnn abba = . 

So, to multiply radical expressions of the same degree, just combine them in one. 

Proof. It is enough to show that the 
thn  power of the left and right sides of the above 

equation is the same. By the definition of the  
thn  root, ( )

n
n a a= , ( )

n
n b b= , and 

( )
n

n ab ab= . Using Product Rule for exponents (see Session 3), we have 

( ) ( ) ( ) ( )
n n n n

n n n n na b a b ab ab =  = = . 

Example 6.1. Multiply and simplify 2 18 . 

Solution.  2 18 2 18 36 6. =  = =  

Quotient Rule:   n
n

n

b

a

b

a
= , 𝑏 ≠ 0. 

As you see, similar to the Product Rule, we can combine two radical expressions of the 

same degree into one. The proof is also similar. 

Note. Informally, you may think about radicals as umbrellas above the numbers. Product 

and Quotient Rules say that you may replace two umbrellas with one that covers both 

numbers.    

Example 6.2. Divide and simplify 
50

2
. 

Solution.  
50 50

25 5.
22

= = =  

Below we will show how to combine radical expressions of different degrees. 

Power Rule: ( )
m

n mn a a=  for positive integer m. 

In particular, ( )
n

n nn a a a= =  (actually, this is the definition of the radical). 

Proof. By the definition of the 
thm  power and the above Product Rule, 

       ( )
copies

... ...
m

n mn n n n n

m

a a a a a a a a=    =    =  

Example 6.3. Simplify ( )
4

2 . 

Solution.  ( ) ( )
4 4

2 2 16 4.= = =  
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Fractional Exponents 

So far, we multiply and divide radical expressions of the same degree only. But what if we 

need to operate with different degrees?  For example, is it possible to somehow represent 

the product 3 22   using only one radical? Here we learn how to do this. The idea is to 

set up a direct connection between radicals and exponents. In this way, we could apply 

product, quotient and power rules of exponents to radicals. 

Let’s try to represent radical expression n a  as exponential with the base a and some power 

m: mn aa = . If we raise both sides of this equation to the 
thn  power, we will have  

  ( ) ( ) nmnm
n

n aaa == . But  ( ) 1aaa
n

n == . Therefore, 
nmaa =1
. 

From here we can equate powers: 1 = mn, and 
n

m
1

= . Now the expression mn aa =  can 

be written as nn aa

1

= . We were able to present the 
thn  root as an exponential expression 

with the fractional power 
n

1
!  We use this representation as a definition. 

Definition. Let a be any nonnegative number, and n be any positive integer. Then 

    nn aa =

1

. 

In particular, 

1

2a a= . 

We can easily generalize this definition to exponential expressions with arbitrary fractional 

power  
n

m
. To do this, just raise both sides of the equation nn aa =

1

 to the 
thm power and 

use the power rules for exponents and radicals: 

( )
1

m
m

m
n mnn na a a a

 
=  = 

 
. 

This motivates the following 

Definition. Let a be any non-negative number, and 
n

m
 be any positive fraction. Then 

n mn

m

aa = . 

Note. Be careful to put m and n on the right side in the correct places: the numerator m is 

the power of a, and the denominator n is the degree of the radical. 

Representing radicals as fractional exponents expands our ability to manipulate with 

radicals. Here is an example of how it may help to simplify radical expressions of different 

degrees. 

Example 6.4. Simplify the expression 32 2  (combine using one radical). 

Solution.  

1 1 1 3 2 51
6 53 63 2 3 6 622 2 2 2 2 2 2 2 32

+
+

 =  = = = = = . 
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Note. In solving the above example, we used the Product Rule. This rule was given in 

Session 3 for integer exponents only. Here is a possible way to justify this rule for fractional 

exponents: 

𝑎
𝑚
𝑛 ∙ 𝑎

𝑝
𝑞 = 𝑎

𝑚𝑞
𝑛𝑞 ∙ 𝑎

𝑝𝑛
𝑞𝑛 = √𝑎𝑚𝑞

𝑛𝑞
∙ √𝑎𝑝𝑛

𝑛𝑞
= √𝑎𝑚𝑞 ∙ 𝑎𝑝𝑛

𝑛𝑞
 

= √𝑎𝑚𝑞+𝑝𝑛
𝑛𝑞

= 𝑎
𝑚𝑞+𝑝𝑛

𝑛𝑞 = 𝑎
𝑚
𝑛

+
𝑝
𝑞 . 

 
In session 3 we considered exponential expressions with negative integer exponents. So far 

in this session, we have dealt with positive fractional exponents. Now we can combine 

these two types of exponents together using the corresponding formulas 

1k

k
a

a

− =   and  
n mn

m

aa = . 

From here we see the connection between negative fractional exponents and radicals: 

  
1 1

m

n
m n m
n

a
a

a

−

= = ,  a > 0.  

Note. In the definition of the expression 𝑎
𝑚

𝑛  with fractional exponent 
n

m
, we always 

assume that the base a is a positive number. The reason is to avoid ambiguous situation 

that may arise when a is negative. For example, compare the following two expressions 

                                                      (−1)
1
3  and (−1)

2
6. 

Since 
1

3
=

2

6
, it is reasonable to expect that both expressions are equal. However, 

(−1)
1
3 = √−1

3
= −1, but (−1)

2
6 = √(−1)26

= √1
6

= 1. 

Example 6.5. Simplify the expression  

10 7

5

3

3
. 

Solution.  

7
7 1 7 2 5 110 7 10

10 5 10 10 2
15

5

3 3
3 3 3 3 3

3
3

−
−

= = = = = = . 

Simplification of Square Roots 

Here we focus on square roots, but a similar technique can also be used for general 

exponents. By simplification, we mean the modification of a given expression in such a 

way that the smallest possible expression remains inside the radical (simplest radicand). 

1. Simplification of the numerical expression a  (a is a number). 
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Let’s re-write the Product Rule, described above, from right to left: nnn baab = . In this 

way, we may split one radical expression into a product of two. In particular, 

√𝑎𝑏 = √𝑎 × √𝑏. This property helps to simplify some radical expressions. 

Example 6.6. Simplify 12 . 

Solution. We split 12 as  4 3 . Then 12 4 3 4 3 2 3=  =  = . 

Note. We can also split 12 in a different way: 12 2 6=  . However, this way will not lead 

to simplification since both factors, 2 and 6, are not perfect squares. Try to split the given 

expression in such a way that one of the factors is a perfect square.  

Example 6.7. Simplify 48 . 

Solution. It is possible to split number 48 as a product of two factors, one of which is a 

perfect square, in two ways: 12448 =  and 31648 = . Both options work. However, if 

we use the first way, we need to continue factoring 12 as 34 , and this way is longer. The 

second way is shorter. In general, try to split the given number in such a way that a factor 

which is not a perfect square cannot be factored further to contain another perfect square. 

So, in this example we choose the second factorization 31648 =  since number 3 has no 

perfect square factor. Using this, we get 3431648 == . 

In sections 2 and 3 below, we assume that 𝑥 ≥ 0. 

2. Simplification of 
nx for even n. 

We can represent the square root using an exponent of 
1

2
, and then use the power rule: 

( )
1

22

n

n nx x x= = . 

We come up to the following method of simplifying the square root from 
nx  with the even 

power n: divide power by 2 and remove radical. 

Example 6.8. Simplify √𝑥10. 

Solution. According to the above rule, 

10

10 52x x x= = . 

Example 6.9. Simplify 16x . 

Solution. According to the above rule, 

16

16 82x x x= = . 

Note. Don’t be misled that in the above example power 16 is a perfect square, so one might 

think of taking the square root of 16. Do not take the square root of the exponent, instead, 

divide the exponent by two. 

3. Simplification of 
nx for odd n. 

Any odd number can be written as 2m + 1, where m is an integer, so we can write nx  as 

58



 

Session 6: Radicals and Fractional Exponents 

2 1mx + . To simplify this expression, we represent 
2 1mx +

 as 
2mx x  (separate an even power 

and a single x). Then 
2 1 2 2m m m mx x x x x x x+ =  =  = . 

We come up to the following rule, how to simplify the square root of 
2 1mx +

: detach 

(separate) single x from 
2 1mx +

: 
2 1 2m mx x x+ =  , then leave x inside the radical and take the 

square root from 
2mx  which is 

mx . 

Example 6.10. Simplify 
7x . 

Solution. Using the above rule, 
7 6 6 3x x x x x x x=  =  = . 

Example 6.11. Simplify 
25x . 

Solution. Using the above rule, 
25 24 24 12x x x x x x x=  =  = . 

Similar to the above note for the even power, do not take square root from 25. 

Example 6.12. Simplify 
99x . 

Solution. Using the above rule, 
9 8 49 9 3x x x x x=  = . 

Note that the number 9 is used here in two different ways depending on whether it is a 

coefficient next to a variable or an exponent: take square root from the coefficient but not 

from the power. 

In conclusion, consider an example that combines all three types of radicals described 

above: numbers, and exponential expressions with even and odd powers of variables. 

Example 6.13. Simplify the expression 
12 74 150x y . 

Solution. 

1st method. (Simplify each factor separately). The radicand is a product of three factors: n 

150, 
12x  and 7y . We can simplify each of them separately: 

65625150 == , 

   612 xx = , 

yyyyy 367 == . 

From here, 12 7 12 7 6 3 6 34 150 4 150 4 5 6 20 6x y x y x y y x y y =    =     = . 

2nd method. (Simplify the entire expression at once). 

12 7 12 6 6 3 6 34 150 4 25 6 4 5 6 20 6x y x y y x y y x y y =      =     = . 
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Exercises 6 
 

In exercises 6.1 and 6.2, evaluate the given expressions without using a calculator. 

 
6.1.  a)  2 8  

b)  
27

3
 

c)  ( )
4

5  

d)  
1

216  

e)  
1

38
−

 

f)  
3

225  

g)  
2

327
−

 

h)  3 64 4  

 6.2.  a)  3 27  

        b)  
80

5
 

        c)  ( )
4

6  

         d)  
1

327  

          e)  
1

236
−

 

          f)  
2

38  

          g)  
3

24
−

 

          h)  6 1281 81  

 

 In exercises 6.3 and 6.4, write the given expressions using one radical symbol and simplify. 

 

6.3.  
7

914

a

a
 

 
6.4.  

6 5

3

b

b
 

   

 In exercises 6.5 –  6.14, simplify the given expressions. 

 

 
6.5.  50   6.6.  54  

 
6.7.  32   6.8.  72  

 
6.9.  a)  8x  

        b)  7x  

 6.10.  a)  6x  

          b)  5x  

 
6.11.  a)  

3636y  

b)  
99y  

 6.12.  a)  4949z  

          b)  6464z  

   
6.13.  

10 5 163 75x y z   6.14.  
14 9 135 75x y z  
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   In exercises 6.15 and 6.16, simplify and write your answers using positive exponents only. 

   

6.15.  

12
3/ 4

4/3

a

b

−

−

 
 
 

 
 

6.16.  

15
5/3

3/5

b

a

−

−

 
 
 

 

 
 

Challenge Problems 
 

6.17.  Calculate without using a calculator 

 

√
518 + 530

524 + 512

3

 

 

6.18.  Prove that 

 

√
𝑎𝑚 + 𝑎𝑚+𝑝

𝑎𝑘 + 𝑎𝑘+𝑝
=

𝑛

𝑎
𝑚−𝑘

𝑛  
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Session 7 
 

Multiplication, Addition and Subtraction of Radical 

Expressions 
 
Multiplication of Radical Expressions 
 

In previous session we considered the Product Rule for radical expressions of the same 

degree n: nnn abba = . This rule allows to combine a product of two (or more) radical 

expressions into one. Here we consider more examples for multiplication of radical 

expressions. We restrict ourselves to square roots only. Also, we assume that all letters 

represent nonnegative numbers. 

Let’s recall that a a a = . This simple formula allows us to avoid tedious calculations in 

some cases: if you notice inside the radical repeated factors, do not multiply them, just 

extract the common factor from the radical. 

Example 7.1. Multiply and simplify 23 46 . 

Solution. One way to proceed is to directly multiply the radicands: 

    23 46 23 46 1058 =  = . 

Now you need to simplify 1058 . Even though it is possible, this is not the best way since 

it might be difficult to continue. Notice, however, that 46 23 2=  , and it is much easier to 

proceed like this: 

    23 46 23 23 2 23 23 2 23 2 =   =   = . 

Example 7.2. Multiply and simplify ( )( )5 3 45 7 3 14x y x y  

Solution. We multiply separately numbers which are outside the radicals (5 and 3) and 

radicands (we also represent 14 as 7 2 ): 

     
( )( ) ( ) ( ) ( )5 3 4 5 3 4

8 4 4 2 4 2

5 7 3 14 5 3 7 7 2

15 7 7 2 15 7 2 105 2

x y x y x y x y

x yy x y y x y y

=   

=   =  =

 

Note that the radicand 2y doesn’t have perfect square factors, so we cannot simplify the 

expression further. 

Addition and Subtraction Radicals 

 

Contrary to the product rule a b ab = , there is no simple rule to add or subtract 
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radical: in general, a b a b+  + . Here is an example: a = 9 and b = 16. Then 

9 16 3 4 7+ = + = , but 9 16 25 5+ = = , so 9 16 9 16+  + . 

 

We can add or subtract radicals directly only if the radicands are exactly the same. This 

procedure is similar to combining like terms. 

Example 7.3. Add 5 7 3 7+ . 

Solution. Similar to combining like terms 5 3 8x x x+ = , we have 5 7 3 7 8 7+ = . 

Example 7.4. Simplify the expression 5 5a x b x+ . 

Solution. 5 5 ( ) 5a x b x a b x+ = + . 

Example 7.5. Simplify the expression 2 3 5 4 2 5x y z y x z+ − − . 

Solution. This expression contains four terms. As we indicated above, we can combine 

only those terms that have the same radicands. We can combine the first term with the third 

(they contain the same 2y ), and the second with the fourth (they contain the same 

5z ): 

( ) ( )2 3 5 4 2 5 4 2 3 5x y z y x z x y x z+ − − = − + − . 

Note. As you can see, the final answer contains two radicals. We cannot combine them in 

one radical because they have different radicands, so no further processing possible. 

There are cases when, even if the original expression contains different radicands, it is still 

possible to combine them. These are the cases when after simplifying the individual 

radicals, they contain common radicands. 

Example 7.6. Simplify the expression 

a)  320 45u u u+ . 

 b)  6 8 5 27 4 32 2 75+ − −  

Solution.  

a) There are two radicands here and they are different, so we cannot combine them initially. 

Let’s simplify them first (we will process the entire expression): 

3 220 45 4 5 9 5 2 5 3 5 5 5u u u u u u u u u u u u u+ =  +  = + = . 

b)  There are four radicals here and all of them have different radicands. Similar to part a), 

we simplify them first: 
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6 8 5 27 4 32 2 75 6 4 2 5 9 3 4 16 2 2 25 3

6 2 2 5 3 3 4 4 2 2 5 3 12 2 15 3 16 2 10 3.

+ − − =  +  −  − 

=  +  −  −  = + − −
 

Now, the first and the third terms contain the same 2 , and the second and the fourth 

contain the same 3 . Therefore, we can combine them: 

( ) ( )12 2 15 3 16 2 10 3 12 16 2 15 10 3 4 2 5 3+ − − = − + − = − + . 

It is not possible to combine further since both radicands are different and cannot be 

simplified more. 

 

Mixed Problems 

 

Example 7.7. Multiply and simplify ( )3 5 2 15 4 30xy x y− . 

Solution. We can distribute using the usual distributive property: 

( )3 5 2 15 4 30 3 5 2 15 3 5 4 30xy x y xy x xy y− =  −  . 

Next, we can simplify each term separately: 

23 5 2 15 3 2 5 15 6 5 15 6 5 5 3 6 5 3 30 3xy x xy x xy x x y x y x y =    =  =   =  = , 

23 5 4 30 3 4 5 30 12 5 30 12 5 5 6 12 5 6 60 6xy y xy y xy y xy y x y x =   =  =   =  =  

Finally, we subtract the last expression from the previous one and get the answer 

( )3 5 2 15 4 30 30 3 60 6 .xy x y x y y x− = −  

Example 7.8. Multiply and simplify ( )( )635423 +− . 

Solution. As in Example 7.7, we start with distribution: 

(3√2 − 4)(5√3 + √6) = 3√2 ⋅ 5√3 + 3√2 ⋅ √6 − 4 ⋅ 5√3 − 4√6. 

Again, we can simplify each term separately (if you want, you may simplify them 

simultaneously): 

3 2 5 3 3 5 2 3 15 6 =   = , 

3 2 6 3 2 6 3 2 2 3 3 2 3 6 3 =  =   =  = . 

320354 = . 

From here, 
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( )( ) 6432036615635423 −−+=+−  

= (15 4) 6 (6 20) 3 11 6 14 3− + − = − . 

Below, we consider an example that can be easily solved using the following difference of 

squares formula, which we already mentioned in session 2: 

      22))(( bababa −=+− . 

Example 7.9. Multiply and simplify ( )( )73527352 +− . 

Solution. We can solve this problem in the same way as we did in Example 7.8 by 

distributing. Notice, however, that inside the first and the second sets of parentheses we 

have difference and sum of the same expressions 2 5  and 3 7 . Therefore, we can use 

the above difference of squares formula with 52=a  and 73=b . We have 

  ( ) ( ) 20545252
2

2
2

2 ====a , 

and  

( ) ( ) 63797373
2

2
2

2 ====b . 

Now, subtract 
2 2a b− and get the answer 

( )( )2 5 3 7 2 5 3 7 20 63 43− + = − = − . 

In the following example we solve a problem similar to Example 7.9 in more general 

form. 

Example 7.10. Multiply and simplify ( )( )yxnmyxnm +− . 

Solution.  

   
( )( ) ( ) ( )

( ) ( )

2 2

2 2
2 2 2 2 .

m n x y m n x y m n x y

m n x y m n x y

− + = −

= − = −

 

Note. The expressions yxnm −  and yxnm +  are called conjugate to each other. 

Example 7.10 shows that the product of conjugate expressions does not contain radicals. 

In the next session, we will use this property to “rationalize” the denominators. 
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Exercises 7 
 

In exercises 7.1 – 7.6, multiply and simplify the given expressions. 

 
7.1. a)  7 7  

       b)  2018 2018  

       c)  47 94  

 7.2. a)  5 5  

       b)  2019 2019  

       c)  26 78  

 
7.3.  14 21   7.4.  18 30  

 

7.5. a)  5 6 3 33 15p q p q  

       b)  ( ) ( )3 2 74 24 6 72a b a b    

 7.6. a)  8 3 3 55 15m n m n  

       b)  ( ) ( )9 6 32 21 7 42u v u v  

        c)  (5√18𝑟5𝑠4) ∙ (3√36𝑟𝑠)         c)  (8√15𝑝8𝑞10) ∙ (4√25𝑝𝑞2) 

 
In exercises 7.7 and 7.8, add or subtract the given expressions. 

 
7.7. a)  3 6 8 6+  

       b)  3 7 5 7−  

 7.8. a)  7 5 2 5+  

       b)  5 3 8 3−  

 
In exercises 7.9 – 7.12, simplify the given expressions. 

 

7.9. 3 6 2 7 4 7 5 6m n k k m n− + +   7.10. 7 3 2 6 4 6 5 3p q r r p q− + +  

 

7.11. a)  8 50+  

         b)   5 27 2 48−  

         c)  8 24 4 20 2 54 6 45+ − −  

 7.12. a) 12 27+  

         b) 6 45 4 80−  

         c) 6 63 7 48 5 28 2 108− + −  

 
In exercises 7.13 – 7.26, multiply and simplify the given expressions. 

 
7.13.  ( )10 2 5+   7.14.  ( )6 2 3+  

 
7.15.  ( )5 7 4 63 3 7−   7.16.  ( )4 3 6 3 2 12−  

 
7.17.  ( )( )2 5 3 6 4 5 2 6+ −   7.18  ( )( )5 2 4 7 3 2 2 7− +  

 
7.19.  ( )( )3 6 2 3 3 6 2 3− +   7.20.  ( )( )4 7 3 5 4 7 3 5+ −  
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7.21.  ( )( )5 5 2 2 5 5 2 2+ −   7.22.  ( )( )6 6 3 3 6 6 3 3− +  

 

7.23.  ( )
2

3 7 2 5+   7.24.  ( )
2

2 6 4 3+  

 

7.25.  ( )
2

3 7 2 5−   7.26.  ( )
2

2 6 4 3−  

 
 

Challenge Problems 
 

7.27. Prove that 5 24 2 3+ = + . 

 

7.28. Prove that for any nonnegative number a, 1 4 1a a a+ + − = . 

 

7.29. Let’s call a square root simple if there are no other square roots inside it. For example, 

         √3 is a simple square root, but √3 + √8 is not (such expression is also called nested 

         root). Represent the expression 3 8 1+ −  as a simple square root. 
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Session 8 
 

Rationalizing the Denominators and Solving Radical 

Equations 
 
Rationalizing the Denominators 
 

Similar to the product rule √𝑎 × √𝑏 = √𝑎𝑏, we can use the following quotient rule to 

divide radicals (we consider here square roots only): 
a a

bb
= . As with the product rule, 

this rule allows to replace two “umbrellas” (two radicals) for a and b, with one “umbrella” 

that covers both. For example, 
10 10 5

6 36
= = . 

Also, we can do just the opposite: brake one radical into two: √
5

3
=

√5

√3
. 

In some cases, it is desirable to modify expressions like this further to get rid of the radical 

in the denominator. The procedure for doing this is called rationalization the 

denominator. 

The general idea to rationalize the denominator is to use the main property of a fraction: if 

we multiply the numerator and denominator of a fraction by the same nonzero expression, 

the value of the fraction remains the same (even if the fraction will look different). We 

consider here two types of fractions: one with a single term with a radical in the 

denominator, and another with a sum (or difference) of two terms in the denominator 

(where at least one of them contains radical). 

Fractions with a single radical term in the denominator. 

Such fractions have the following general form 
expr

m n
, where expr means some expression. 

To rationalize the denominator, we multiply both the numerator and denominator by n  

and simplify the denominator, using the property n n n = . In doing this, we get rid of 

the radical in the denominator (so, we rationalize the denominator): 

expr expr exprn n

mnm n m n n
= = . 

Example 8.1. Rationalize the denominator: 
5

3
. 
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Solution. We have 
5 5

3 3
= . To continue (to get rid of 3  in the denominator), we 

multiply the numerator and the denominators by 3 : 

5 5 3 15

33 3 3


= =


. 

Example 8.2. Rationalize the denominator: 
6

5 8
. 

Solution. Following the same method, we multiply the numerator and denominator by 8  

(it is not needed to also multiply by 5): 

6 6 8 6 8 6 4 2 6 2 2 3 2

5 8 5 8 5 8 105 8 5 8 8

  
= = = = =

  
. 

Here we also simplified 8 . If you compare initial fraction 
6

5 8
 with the final answer 

3 2

10
, they seem completely different. However, they have exactly the same numerical 

values (you can check this using a calculator). 
 

Fractions with the sum or difference of two terms in the denominator. 
 

Such fractions have the following general form 

expr

m n x y−
   or   

expr

m n x y+
, 

where expr, as before, means some expression. The denominators in these two fractions 

are conjugate to each other. As we already saw in example 7.10 from the previous session, 

their product is a rational expression (i.e. an expression with no radicals): 

( )( ) 2 2m n x y m n x y m n x y− + = − . 

This property allows us to rationalize the denominators: multiply the numerator and 

denominator by the expression conjugate to the denominator. 

Note. If you try to multiply the numerator and denominator of the above fractions by only 

one of the radicals (for example, by n ), you will still have radicals in denominator. So, 

do not confuse the two cases: single term in the denominator (when we multiply the 

numerator and denominator by the radical in the denominator) and the sum or difference 

of two terms (when we multiply the numerator and denominator by the expression 

conjugate to the entire denominator). For example, consider two fractions: 
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a

b c
 and a

b c+
. 

We use different methods to rationalize them: for the first fraction we multiply the 

numerator and denominator by c , while for the second fraction we multiply the 

numerator and denominator by b c− : 

( )
( )( )

( )
2

,
a b c a b ca a c a c a

bc b cb c b c c b c b c b c

− −
= = = =

− + + −
. 

Example 8.3. Rationalize the denominator: 1

2 3−
. 

Solution. Here we have a difference of two terms in the denominator: 2 3− . Therefore, 

we multiply the numerator and denominator by the expression conjugate to the 

denominator. The conjugate expression is 2 3+ .  

  
( )

( )( ) ( )
2

2

1 2 31 2 3 2 3
2 3

4 32 3 2 3 2 3 2 3

 + + +
= = = = +

−− − + −

. 

Final answer looks pretty nice: 
1

2 3
2 3

= +
−

. 

Example 8.4. Rationalize the denominator: 
yx

x

23

3

+

−
. 

Solution. The expression conjugate to the denominator is 3 2x y− . We multiply the 

numerator and denominator by it: 

 

( )( )
( )( ) ( ) ( )

2 2
2 2

3 3 2 3 2 3 3 3 23

3 2 3 2 3 2 3 2

3 2 9 6
.

9 4

x x y x x x y x yx

x y x y x y x y

x xy x y

x y

− −  −  −  + −
= =

+ + − −

− − +
=

−

 

Solving Radical Equations 
 

We now consider equations that contain radicals. They can be transformed into equations 

without radicals in two steps:  

Step 1: If needed, isolate the term with the radical (i.e. leave it alone on one side of the 

equation). 

Step 2: Square both sides of the equation. 
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Note. When you square both sides of an equation, it is possible to get so-called “extraneous 

solutions”, that is, answers that are not solutions to the original equation. Here is a simple 

example: 1 2x + = . Obviously, this equation has only one solution 1x = . Now, if we square 

both sides of this equation, we get ( )
2 21 2x + = , or  

( )( )2 22 1 4 2 3 0 1 3 0x x x x x x+ + =  + − =  − + = . 

The last equation has two solutions: 1x =  and 3x = − . However, the value 3x = −  is not a 

solution to the original equation 1 2x + =  (it is the extraneous one). The conclusion from 

this note is this: always check your final answers with the original equation. 

 

Example 8.5. Solve the equation 2 1 7x − = . 

Solution. Here, the radical is already isolated, and the first step is not needed. We just 

square both sides: 

    ( )
2

22 1 7 2 1 49 2 49 1 2 50 25x x x x x− =  − =  = +  =  = . 

It is easy to verify that the number 25 is a solution of the original equation: 

2 25 1 49 7 − = = . Final answer: x = 25. 

 

Example 8.6. Solve the equation 6 5 7 6x − + = . 

Solution. Here the radical is not isolated, so we isolate it by moving number 7 to the right 

side: 

    6 5 6 7x − = −  or 156 −=−x . 

 Now, the radical is isolated, and we square both sides: 

   ( ) ( )
2 2

6 5 1 6 5 1 6 1 5 6 6 1x x x x x− = −  − =  = +  =  = . 

So, it looks like x = 1 is a solution. Let’s check it with the original equation. Calculate the 

left side: 

  6 1 5 7 1 7 1 7 8 − + = + = + = . 

 However, the right side of the original equation is 6, not 8, so 1x =  is not a solution and 

we reject it. The original equation has no solutions at all. 

 Note. It can be seen at the very beginning without doing anything that the original equation 

doesn’t have solutions. Indeed, the square root on the left side is never negative (always 

nonnegative, see the definition of a radical in Session 6), and by adding it to 7, we cannot 

get 6. 

 

Example 8.7. Solve the equation 
24 14 3 2 3 0x x x+ + − − = . 
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Solution. Here again the radical is not isolated, and we isolate it by moving terms 2x and 

3 to the right side: 
24 14 3 2 3x x x+ + = + . 

Now square both sides: 

( ) ( )
2

22 2 24 14 3 2 3 4 14 3 4 12 9x x x x x x x+ + = +  + + = + + . 

Reducing (cancel out) 24x  from both sides, we get 

14 3 12 9 2 6 3.x x x x+ = +  =  =  

Finally, we check x = 3 with the original equation:  

       
24 3 14 3 3 2 3 3 36 42 3 6 3 81 9 9 9 0 +  + −  − = + + − − = − = − = .  

So, x = 3 is a solution. 

Example 8.8. Solve the equation 2 11 4x x+ − = . 

Solution. Here the radical is not isolated, and we isolate it by moving x to the right side: 

2 11 4x x+ = + . Now we square both sides: 

( ) ( )
2 2 22 11 4 2 11 16 8x x x x x+ = +  + = + + . 

We obtained a quadratic equation. Let’s write it in the standard form 2 0ax bx c+ + = . For 

this, we first switch left and right sides: 216 8 2 11x x x+ + = + , and then move 2 11x +  from 

the right side to the left: 

      216 8 2 11 0x x x+ + − − =  or 2 6 5 0x x+ + = . 

The last equation can be solved by factoring: ( )( )1 5 0x x+ + = . We’ve got two solutions 

of the quadratic equation: 1x = −  and 5x = − . We need to check them with the original 

equation. 

1x = − :  2 11 2 ( 1) 11 ( 1) 9 1 3 1 4x x+ − =  − + − − = + = + = . So, 1x = −  is a solution. 

5x = −  :  2 11 2 ( 5) 11 ( 5) 1 5 1 5 6 4x x+ − =  − + − − = + = + =  . So, 5x = −  is not a 

solution and we reject it. 

Final answer: the original equation has only one solution 1x = − . 

Example 8.9. Solve the equation 2 6 3x x− + = . 

Solution. Here the radical is not isolated, and we isolate it by moving 3 to the right side: 

2 6 3x x− = − . Now we square both sides: 

( ) ( )
2 2 2 2 22 6 3 2 6 6 9 0 6 9 2 6 0 8 15x x x x x x x x x x− = −  − = − +  = − + − +  = − +  

( )( )2 8 15 0 3 5 0x x x x − + =  − − = . 
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We’ve got two solutions of the quadratic equation: 3x =  and 5x = . We need to check 

them with the original equation. 

3: 2 6 3 2 3 6 3 0 3 3x x= − + =  − + = + = . So, 3x =  is a solution. 

5 : 2 6 3 2 5 6 3 4 3 2 3 5x x= − + =  − + = + = + = . So, 5x =  is a solution. 

Final answer: the original equation has two solutions, 3x =  and 5x = . 
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Exercises 8 

 

In exercises 8.1 – 8.16, rationalize the denominator and simplify. 

 

8.1.   
5

6
 

 
8.2.   

4

3
 

 

8.3.   
3

5
 

 
8.4.   

6

7
 

 

8.5.   
2

3 20
 

 
8.6.   

3

5 27
 

 

8.7.   
4

5 3
 

 
8.8.   

2

3 5
 

 

8.9.   
4

5 3+
 

 
8.10.  

2

3 5+
 

 

8.11.  
1

2 3−
 

 
8.12.  

1

5 6+
 

 

8.13.  
1

6 3+
 

 
8.14.  

1

6 5−
 

 

8.15.  
2

4 3

u

u v

+

−
 

 
8.16.  

2 5

a b

a b

+

+
 

 

In exercises 8.17 – 8.30, solve the given equation. 

 

8.17.  3 4 5x + =   8.18.  4 3 7x − =  

 

8.19.  5 4 2 8x − + =   8.20.  7 1 4 2x + − =  

   

8.21.  6 8 5 3x − + =   8.22.  8 9 7 2x + + =  

   

8.23.  
216 70 7 4 7 0x x x+ − − − =   8.24.  

225 12 7 5 1 0x x x− + − + =  

 

8.25.  
29 7 18 4 3x x x+ − − =   8.26.  

236 19 25 3 6x x x− − + =  
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8.27.  a)  3 10 2x x+ − =  

          b)  3 7 3x x+ − =  

 8.28.  a)  4 13 4x x+ − =  

         b)  4 21 4x x+ − =  

   

8.29.  a)  √4 𝑥 − 3 − 𝑥 = 0         8.30.  a)  √6 𝑥 − 8 − 𝑥 = 0 

          b) √4 𝑥 + 5 − 𝑥 = 0             b) √6 𝑥 + 7 − 𝑥 = 0 

 

Note. Challenge Problem 10.10 from Ch. 10 represents a general form of equations, as in 

problems 8.29 and 8.30. 

 

Challenge Problems 

 

8.31.  Consider the equation √𝑎𝑥 + 𝑏2 − 𝑥 = 𝑏. 

         Prove the following statements: 

1) If  𝑏 < 0, then 

a) If a < b, then the equation has no solutions. 

b) If 𝑎 ≥ 𝑏, then the equation has the only solution x = a – 2b. 

2) If  𝑏 ≥ 0, then 

a) If a < b or a = 2b, then the equation has the only solution x = 0. 

b) If  𝑎 ≥ 𝑏 and 𝑎 ≠ 2𝑏, then the equation has two solutions 

x = 0 and x = a – 2b. 

 

8.32.  Consider the equation √𝑎𝑥 + 𝑏2 − 𝑎𝑐 − 𝑥 = 𝑏 − 𝑐 , where a > 0. 

          Prove the following statements: 
 

     1)  If b < 0, then the equation has only one solution x = a + c – 2b. 

2)  If b > a or b = a/2, then the equation has only one solution x = c. 

3)  If  0 ≤ 𝑏 ≤ 𝑎 and 𝑏 ≠ 𝑎/2, then the equation has both of the above solutions. 

Hints: 1) Check that the quadratic equation 𝑎𝑥 + 𝑏2 − 𝑎𝑐 = (𝑥 + 𝑏 − 𝑐)2 has the 

                   solutions  x = c and x = a + c – 2b. 

 2)  Use the property 
2

, if 0,

, if 0.

u u
u u

u u


= = 

− 
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a a i− =   

Session 9 
 

Complex Numbers and 

Squared Form of Quadratic Equations 
 

In section 2 we considered quadratic equations that can be solved by factoring. However, 

not every quadratic equation can be solved by factoring (using rational numbers). Below 

we consider corresponding examples. Also, unlike linear equations, quadratic equations do 

not always have real solutions. We will discussion this case first. 

Complex Numbers 

A simple example of an equation without real roots is the equation 012 =+x . It can be 

written as 12 −=x . Obviously, this equation does not have solutions because the square of 

a real number cannot be negative. 

However, it is possible to introduce a special symbol that can be treated as a solution of the 

equation 012 =+x . Usually, this symbol is denoted by the letter i and is called the 

imaginary unit (that’s why the letter i). Of course, i is not a real number. It has the property 

that 12 −=i . Also, we can write that 1−=i . 

Note. You may be disappointed with such a “definition” of the number i. Indeed, it looks 

like we introduce an object that does not exist: the equation 012 =+x  does not have real 

solutions, and we use the letter i for a non-existent solution. If you have such feelings, you 

are not the only one. For more than two hundred years many mathematicians felt the same 

way. Only in the 18th century the exact theory of the so-called complex numbers was 

created which included the symbol i as well as other related to it “magic” numbers. We can 

look at a complex number as an ordered pair of two real numbers. 

Definition. A complex number z is an expression of the form z = a + bi. Here a and b are 

two real numbers, and i is a symbol with the property 12 −== iii . In fact, we are saying 

that ii   is equal to –1 by definition of i. The symbol i is called the imaginary unit, the 

number a is the real part, and the number b is the imaginary part of the complex number 

z. The form a + bi is called the standard form of a complex number. 

Using the symbol i, a square root of any negative number can be written as a complex 

number: if a is a non-negative real number, then  1a a a i− =  − =  , so  

             , 0a  .  

Example 9.1. Express 48−  in terms of i and simplify. 

Solution. 48 48 16 3 4 3i i i− =  =   =  . 

We can operate with complex numbers in the same way as with polynomials or rational 

expressions: we can perform all arithmetic operations with them, distribute, combine like 
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terms. The only specific property we use is that if we multiply i by i, the result is –1. We 

say that two complex numbers ibaz 111 +=  and ibaz 222 +=  are equal, if separately their 

real and imaginary parts are equal: 21 aa =  and 21 bb = . 

If a is a real number, then it can be written as a complex one via: a = a + 0i. In this way we 

can consider the set of real numbers as a subset of the set of complex numbers. In other 

words, the set of complex numbers can be treated as an extension of the set of real numbers.  

Let’s consider arithmetic operations with complex numbers. 

Example 9.2. 

1) Add (3 + 2i) + (1 + 5i). 

2) Subtract (6 + 3i) – (4 – 7i). 

3) Multiply (1 + i)(2 + 3i). 

4) Multiply  (3 + 4i)(3 – 4i). 

Solution. As we mentioned above, we can perform these operations as with ordinary 

algebraic expressions just keeping in mind that 12 −=i . 

1) (3 + 2i) + (1 + 5i) = (3 + 1) + (2 + 5)i = 4 + 7i. 

2) (6 + 3i) – (4 – 7i) = (6 – 4) + (3 – (–7))i = 2 + 10i. 

3) iiiiiiiiii 513232)1(32323232)32)(1( 2 +−=−++=−+++=+++=++ . 

4) We can proceed the same way as in part 3) or use as a shortcut the difference of squares 

formula that we already used in session 2 (see the note after example 2.1): 
22))(( bababa −=+− . Using this formula we have 

( ) ( ) ( )
223 4 (3 4 ) 3 4 9 16 1 9 16 25i i i+ − = − = −  − = + = . 

Note that the result of multiplication here is a real number. Below we will use a similar 

result in a general form. 

Next, consider division of complex numbers. At first glance, the quotient of two complex 

numbers does not look like a complex number. For example, can the quotient 
5+4𝑖

3−2𝑖
 be 

represented as a complex number in the standard form a + bi? It turns out, the answer is 

yes. The method of dividing complex numbers is similar to the one we used in the previous 

session to rationalize the denominator of radical expressions with two terms in the 

denominator: we multiplied the numerator and denominator of a fraction by the expression 

conjugate to the denominator. Similarly, consider the following pair of complex numbers 

1z  and 2z : 

biaz +=1 ,  biaz −=2 . 

These numbers have the same real part a, while their imaginary parts b and – b differ only 

by a sign. Numbers a bi+  and a bi−  are called complex conjugate to each other. An 

important property is that if we multiply them, the product is a real number: 
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 22222

21 ))(( baibabiabiabiabiazz +=−+−=−+= . 

This property allows us to represent the quotient 
bia

dic

+

+
 as a complex number in standard 

form by multiplying the numerator and denominator of this fraction by a bi−  which is the 

conjugate of the denominator: 

2

2 2 2 2

( )( ) ( ) ( )

( )( )

c di c di a bi ac bci adi bdi ac bd ad bc i

a bi a bi a bi a b a b

+ + − − + − + + −
= = =

+ + − + +
 

  So,  

               i
ba

bcad

ba

bdac

bia

dic
2222 +

−
+

+

+
=

+

+
. 

As you see, the result is written as the sum of two parts, the real part being 
2 2

ac bd

a b

+

+
 and 

the imaginary part being 
2 2

ad bc

a b

−

+
. Therefore, the result of division is a complex number in 

standard form. We got the general formula for dividing two complex numbers. 

Note. The above formula looks rather complicated. Don’t worry: you don’t need to 

memorize it. Just keep in mind the method for dividing complex numbers: multiply the 

numerator and denominator by the number conjugate to the denominator. 

Example 9.3. Divide (5 + 4i) by (3 –  2i). 

Solution. 
 

25 4 (5 4 )(3 2 ) 15 10 12 8 (15 8) (10 12) 7 22 7 22

3 2 (3 2 )(3 2 ) 9 4 13 13 13 13

i i i i i i i i
i

i i i

+ + + + + + − + + +
= = = = = +

− − + +
. 

If the denominator of a fraction contains only the imaginary part (so, the real part is equal 

to zero), to divide, simply multiply the numerator and denominator by i. 

Example 9.4. Divide 1 by i. 

Solution. 
1 1

1

i i
i

i i i


= = = −

 −
. This result can also be written as 

1i i− = − . 

Example 9.5. Divide 7 – 5i by 4i. 

Solution. 
( ) 2

2

7 57 5 7 5 7 5 5 7
.

4 4 4 4 4 4

i ii i i i
i

i i i i

− − − +
= = = = − −

 −
 

Now we consider how to raise the imaginary unit i to any positive integer power. 

 

78



 

Session 9: Complex Numbers and Squared Form of Quadratic Equations 

Example 9.6. Calculate 

1) 3i     2)  
4i    3)  

5i   4)  
6i  

Solution.  

1) iiiii −=−== )1(23 .          2) ( ) ( )
2 24 2 1 1i i== = − = . 

3) 𝑖5 = 𝑖4 ⋅ 𝑖 = (𝑖2)2 ⋅ 𝑖 = (−1)2 ∙ 𝑖 = 𝑖.  4) ( ) ( )
3 36 2 1 1.i i= = − = −  

The above example suggests a method for calculating 
ni  for any positive integer power n. 

First of all, note that ( )1 1
k

− = , if k is even, and ( )1 1
k

− = − , if k is odd. To calculate 
ni , 

consider separately cases of even and odd n. 

1) If n is even, it can be written as n = 2k, where k is an integer. Then 

 ( ) ( )2 2 1
k kn ki i i= = = − . 

    From here 
ni  is equal to 1 or  –1, depending on whether k is even or odd. For even k, 

    1ni = , and for odd k, 1ni = − . 

2) If n is odd, it can be written as n = 2k + 1, where k is an integer. Then 

 ( ) ( )2 1 2 2 1
k kn k ki i i i i i i+= =  =  = −  . 

    From here 
ni  is equal to i or –i, depending on whether k is even or odd. For even k, 

    
ni i= , and for odd k, 

ni i= − . 

Example 9.7. Calculate 

1) 100i       2)  
50i   3)  

29i           4)  
35i  

Solution. 

1) ( ) ( )
50 50100 2 1 1.i i= = − =  

2) ( ) ( )
25 2550 2 1 1.i i= = − = −  

3) 𝑖29 = 𝑖28 ⋅ 𝑖 = (𝑖2)14 ⋅ 𝑖 = (−1)14 ⋅ 𝑖 = 𝑖. 

4)  ( ) ( )
17 1735 34 2 1 .i i i i i i i=  =  = −  = −  

 

 

The Squared Form of Quadratic Equations 

We will call the quadratic equation written in the squared form, if it is written as 

     rqpx =+ 2)( . 

In the next session, we will show that any quadratic equation can be transformed to this 

form. 

To solve this equation, we will use the square-root property. It states that the equation  
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𝑥2 = 𝑟 has two solutions: 𝑥 = √𝑟 and 𝑥 = −√𝑟. Using this property, we take the square 

root on both sides of the above equation in the squared form. As a result, we get two linear 

equations: rqpx =+  and rqpx −=+ . It is very common to write both equations as a 

single one using the symbol “ ”: rqpx =+ . From here, rqpx −= , and 

p

rq
x

−
= . This is the final answer for the solutions of the equation rqpx =+ 2)( . 

Note. Keep in mind that the formula 
p

rq
x

−
=  represents two solutions: 

𝑥1 = 
−𝑞+√𝑟

𝑝
 and 𝑥2 = 

−𝑞−√𝑟

𝑝
. 

Example 9.8. Solve the quadratic equation 5)23( 2 =+x . 

Solution. Applying the square-root property, take the square root on both sides using the 

symbol “ ”: 523 =+x . From here, 523 −=x  and 
3

52−
=x . 

Note. The final answer 
3

52−
=x  represents two exact solutions written in radical 

form: 𝑥1 = 
−2+√5

3
 and 𝑥2 = 

−2−√5

3
. If we want to get solutions as decimal numbers, we 

can do this only approximately. Using a calculator to approximate 5  as 2.236, we can 

get the following approximations for the solutions: 

𝑥1 =
−2 + √5

3
≈

−2 + 2.236

3
≈ 0.079 and 𝑥2 =

−2 − √5

3
≈

−2 − 2.236

3
= −1.412 

Example 9.8 shows us that not every quadratic equation can be solved by factoring in terms 

of rational numbers. 

Example 9.9. Solve the quadratic equation 0)25( 2 =−x . 

Solution. By taking the square root on both sides, we get only one linear equation 

5 2 0x − = . From here, 
5

2
=x . So, the given quadratic equation has only one (unique) 

solution 
5

2
=x . 

Example 9.10. Solve the quadratic equation 
2 5 0x + = . 

Solution. Write this equation in squared form 
2 5x = − . From here, 5x =  − . Number 

5−  can be written in terms of the imaginary unit i: 5 5 i− =  , so 5x i=   . The 

solutions are two imaginary numbers  5 i  and 5 i−  . 
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Example 9.11. Solve the quadratic equation 07)34( 2 =+−x . 

Solution. Write the equation in squared form: 7)34( 2 −=−x . Next, apply the square-root 

property (take square root on both sides) to get  4 3 7x − =  − . Number 7−  can be 

written in terms of imaginary unit i: 7 7 i− =   and we get the equation 4 3 7x i− =  

. From here, 4 3 7x i=   ,  and 
3 7

4

i
x

 
= . So, the final answer is represented by two 

complex conjugate numbers: 

                     
1

3 7 3 7

4 4 4

i
x i

+ 
= = +  and 

2

3 7 3 7

4 4 4

i
x i

− 
= = − . 
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Exercises 9 
 

In exercises 9.1 and 9.2, represent the given expression in terms of i and simplify. 

 

9.1.    a)  25−  

  b)  32−  

 9.2.    a)  16−  

  b)  27−  

 
In exercises 9.3 and 9.4, add or subtract the complex numbers. 

 
9.3.    a)  (7 3 ) (2 5 )i i+ + −  

  b)  (4 6 ) (8 2 )i i− − +  

 9.4.    a)  (9 4 ) (3 )i i− + −  

          b)  (6 3 ) (2 8 )i i− − −  

 
In exercises 9.5 and 9.6, multiply the complex numbers. 

 
9.5.    a)  3(2 4 )i−  

          b)  4 (5 2 )i i+  

          c)  (4 5 )(2 3 )i i+ +  

  d)  (6 3 )(2 8 )i i− −  

  e)  (5 3 )(6 5 )i i+ −  

  f)  (3 2 )(3 2 )i i− +  

 9.6.    a)  4(3 5 )i+  

  b)  7 (6 3 )i i−  

  c)  (8 3 )(2 4 )i i+ +  

  d)  (7 3 )(5 6 )i i− −  

  e)  (4 6 )(7 )i i− +  

          f)  (2 4 )(2 4 )i i+ −  

 
In exercises 9.7 and 9.8, divide. Write the answer in the standard form for complex numbers. 

 
9.7.    a)  (8 2 ) 5i+   

  b)  3 (2 )i  

  c)  (9 6 ) ( 4 )i i−  −  

          d)  ( 4 3 ) (5 6 )i i− +  −  

          e)  (6 7 ) ( 3 4 )i i+  − +  

          f)  (3 2 ) (3 2 )i i−  +  

 9.8.    a)  ( 6 7 ) 2i− +   

  b)  2 ( 3 )i −  

  c)  (4 3 ) (6 )i i+   

          d)  (5 6 ) (4 3 )i i−  −  

          e)  (4 5 ) ( 3 2 )i i+  − +  

           f)  (2 7 ) (2 7 )i i−  +  

 
In exercises 9.9 and 9.10, calculate 

 

9.9.    a)  
2018i  

  b)  
2019i  

  c)  
2020i  

  d)  
2021i  

 9.10.   a)  
2023i  

   b)  
2024i  

   c)  
2025i  

           d)  
2026i  
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In exercises 9.11 and 9.12, solve the given equations. 

 
9.11.    a)  2(4 3) 6x − =  

   b)  
2 7 0x + =  

    c)  2(6 4) 3 0x + + =  

 9.12.    a)  2(5 2) 3x + =  

            b)  
2 3 0x + =  

            c)  2(7 5) 6 0x − + =  
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Session 10 
 

Completing the Square. The Quadratic Formula 
 

In this session, we show that any quadratic equation can be written in the squared form 

described in the previous session. In this way, we also get a quadratic formula. It allows us 

to solve any quadratic equation by simply substituting its coefficients into the formula. 

Completing the Square 

The procedure for converting a quadratic equation from the standard form 02 =++ cbxax  

into the squared form rqpx =+ 2)(  is called the Completing the Square. This procedure 

is based on the following two formulas that we already mentioned in session 2 – the square 

of the sum and the square of the difference formulas: 

   2 2 2( ) 2x p x px p+ = + +  (Square of the Sum Formula). 

2 2 2( ) 2x p x px p− = − +  (Square of the Difference Formula). 

We start with a special case: consider how to complete the square for the equation 

   2 2 0x px c+ + =   (a = 1, b = 2p). 

We can rewrite it like this (bring c to the right): 

   2 2x px c+ = − . 

Compare the left side of this equation with the square of the sum formula (written from 

right to left) 

   2 2 22 ( )x px p x p+ + = + . 

We see that the left side of our equation 2 2x px c+ = −  is not the square 2( )x p+  because 

the term 2p  is missing. To make up for this deficit (to complete the square), we add 2p  to 

both sides of our equation: 

 2 2x px c+ = − , 

             2 2 22x px p c p+ + = − + , 

             ( )
2 2x p c p+ = − + . 

 We have completed thus the square and presented the equation in the squared form. 

Next, consider the case of reduced equation 
2 0x bx c+ + = (the case when a = 1). By 

moving c to the right, we get 
2 .x bx c+ = −  To make the left side 

2x bx+  look like 

2 2x px+ , we write the coefficient  b as 2
2

b
b = , so 

2

b
p = . Then, to complete the square, 

we add 

2

2

2

b
p

 
=  
 

 to both sides of equation: 
2x bx c+ = − : 
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2 2 2 2
2

2 2 2 4

b b b b
x bx c x c

     
+ + = − +  + = − +     

     
. 

We can describe getting the term 

2

2

b 
 
 

 that we add to both sides of the equation 

2x bx c+ = − , as the following rule. 

A rule for constructing a third term to be added to 𝑥2 + 𝑏𝑥 to complete the square: 

  

 

For the general case of the equation 02 =++ cbxax  with arbitrary 0a , we can take just 

one additional step: divide both sides of this equation by the leading coefficient a. Then we 

get the reduced equation 02 =++
a

c
x

a

b
x . 

Example 10.1. Solve the quadratic equation 0562 =++ xx  by completing the square. 

Solution. Bring the last term 5 to the right: 562 −=+ xx . Next, divide coefficient 6 by 2 

and square: 

2

26
3 9

2

 
= = 

 
. Add this 9 to both sides of the equation 562 −=+ xx  to get 

2 26 3 5 9 4x x+ + = − + = . Complete the square: ( )
2

3 4x + = . 

We finish solving the equation by applying the square-root property: 243 ==+x . 

From here, 23−=x , and we get two solutions: 𝑥1 = −3 + 2 = −1, and 

 𝑥2 = −3 − 2 = −5. Final answer: x1 = – 1 and x2 = – 5. 

Example 10.2. Solve the quadratic equation 0352 =+− xx  by completing the square. 

Solution. Bring the last term 3 to the right: 352 −=− xx . Divide coefficient –5 by 2 and 

square: 

2 2
5 5 25

2 2 4

   
− = =   
   

. Add 
25

4
 to both sides of the equation 352 −=− xx : 

2

2 5 25
5 3

2 4
x x

 
− + = − + 

 
. Complete the square using the square of the difference formula  

4

13

2

5
2

=







−x . From here, applying the square-root property 

    
2

13

4

13

2

5
==−x ,   

2

135

2

13

2

5 
==x . 

The answer is represented in the radical form that combines two solutions 

𝑥1 =
5 + √13

2
 and 𝑥2 =

5 − √13

2
 

in one formula. 

Divide coefficient b by 2 and square it 
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Example 10.3. Solve the quadratic equation 0253 2 =++ xx  by completing the square. 

Solution. Here the leading coefficient is not 1, it is 3. We can use the following steps to 

solve the given equation. 

1) Divide both sides by the leading coefficient 3: 0
3

2

3

52 =++ xx . 

2) Bring the last term 
3

2
 to the right: 

3

2

3

52 −=+ xx . 

3) Divide coefficient 
3

5
 by 2 and square: 

36

25

6

5
2

=







: 

4) Add the number 
25

36
 to both sides of the equation 

3

2

3

52 −=+ xx : 

           

2

2 5 5 2 25
.

3 6 3 36
x x

 
+ + = − + 

 
 

5) Complete the square: 
36

1

6

5
2

=







+x . 

To get solutions, take square root on both sides: 
6

1

36

1

6

5
==+x . 

Finally, solve for x: 
6

1

6

5
−=x . We come up with two solutions: 

3

2

6

4

6

1

6

5
−=−=+−=x  

and 1
6

6

6

1

6

5
−=−=−−=x . Final answer: x1 = – 

2

3
 and 𝑥2 = −1. 

Note. It would be probably easier to solve the equations in examples 10.1 and 10.3 by 

factoring. However, we used the method of completing the square to demonstrate its 

universal character: any quadratic equation can be solved by this method, contrary to the 

method of factoring that does not work in all cases. In Example 10.2 the solutions are 

irrational numbers (since they contain 13 ) and cannot be obtained by factoring the 

quadratic equation using rational numbers. 

 

Quadratic Formula 

In order to obtain the quadratic formula, we repeat steps that we used in Example 10.3 for 

the general equation  02 =++ cbxax , 0a  written in standard form. 

1)  Divide both sides by the leading coefficient a to get the reduced equation: 

                                             02 =++
a

c
x

a

b
x . 

2)  Bring the last term 
c

a
 to the right side: 

2 b c
x x

a a
+ = − . 
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2 4

2

b b ac
x

a

−  −
=  

3)  Divide coefficient 
b

a
 by 2 and square: 

2 2

22 4

b b

a a

 
= 

 
 

4)  Add  
2

24

b

a
 to both sides of the equation 

2 b c
x x

a a
+ = − : 

2 2
2

22 4

b b c b
x x

a a a a

 
+ + = − + 

 
. 

5)  Complete the square on the left side: 

      

2 2

2

2 2

b b b
x x x

a a a

   
+ + = +   

   
. 

On the right side, we combine fractions by getting the common denominator of 
24a : 

   

2

2

2

2

2

2

22

2

4

4

4

4

44

4

4 a

acb

a

bac

a

b

a

ac

a

b

a

c −
=

+−
=+−=+− . 

 

Now we can write 
2 2

2

4

2 4

b b ac
x

a a

− 
+ = 

 
. 

This is the squared form of the equation 02 =++ cbxax . To solve it, we apply the square-

root property: 

a

acb

a

acb

a

b
x

2

4

4

4

2

2

2

2 −
=

−
=+  

To solve for x, bring the term 
a

b

2
 to the right side: 

             
a

acbb

a

acb

a

b
x

2

4

2

4

2

22 −−
=

−
−= . 

 

We get a formula called the quadratic formula 

    

 

 

 

 This formula gives the solutions of any quadratic equation written in standard form 

 02 =++ cbxax , 0a . 

The quadratic formula also allows us to get an idea about the “nature” of the solutions for 

quadratic equations. Let’s analyze this. First of all, the quadratic formula represents two 
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solutions 1x  and 2x : 

  
2

1

4

2

b b ac
x

a

− + −
=  and 

2

2

4

2

b b ac
x

a

− − −
= , 

written together in one formula, using " "  operation. 

Also notice that the main part of this formula is the expression inside square root: 
2 4b ac− . This expression is important and it is given a special name. 

Definition. The expression 
2 4b ac−  is called the discriminant of the quadratic equation 

02 =++ cbxax , and is denoted by the letter D: 
2 4D b ac= − . 

Using the discriminant, the quadratic formula can be written in a slightly simpler form 

  
2

b D
x

a

− 
=  or  

1
2

b D
x

a

− +
=  and  2

2

b D
x

a

− −
= . 

Note. For the reduced quadratic equation 
2 0x bx c+ + =  (when a = 1), D , when 

D > 0, has the following interesting geometric interpretation: it is the distance between 

roots 1x  and 2x  on number line: 
1 2 .

2 2 2

b D b D D D
x x D

− + − − +
− = − = =  

The discriminant is a real number, and it may be positive, negative or zero. Let’s see how 

the sign of the discriminant affects the roots 1x  and 2x . 

1) Discriminant is positive: 0D  . In this case D  is a positive number and the 

expressions b D− +  and b D− −  are two different real numbers. Therefore, from 

the quadratic formula, the quadratic equation has two roots 1x  and 2x  which are real 

numbers and distinct. Roots 1x  and 2x  may be rational or irrational numbers. 

2) Discriminant is zero: 0D = . In this case roots 1
2

b
x

a

−
=  and 2

2

b
x

a

−
= , so roots coincide 

and the equation has only one real root 
2

b
x

a
= − . 

3) Discriminant is negative: 0D  . In this case D  is an imaginary number and the 

equation has two complex roots 1x  and 2x  which are conjugate to each other. 

As you can see, there are only three options regarding the nature of solutions for any 

quadratic equation: it may have one real solution, two (distinct) real solutions, or two 

complex conjugate solutions. The sign of the discriminant allows us to distinguish between 

these three cases. 

We now consider some examples of using the quadratic formula. You can use any form, 

with or without a discriminant. We will use the discriminant form 

 
2

b D
x

a

− 
= , where

2 4D b ac= − . 
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Note. When using the quadratic formula, make sure that the quadratic equation is written 

in the standard form 02 =++ cbxax  (the right side must be zero) to identify coefficients 

a, b, and c correctly. 

Example 10.4. Solve the quadratic equation 
23 6 2x x+ =  by using the quadratic formula. 

Solution. The equation is not in standard form. To get it in standard form, bring 2 from the 

right side to the left: 
23 6 2 0x x+ − = . Now identify the coefficients and calculate the 

discriminant: 

 3, 6, 2a b c= = = − , so 2 24 6 4 3 ( 2) 36 24 60D b ac= − = −   − = + = . 

The discriminant is positive, so our equation has two distinct real solutions 

6 60 6 4 15 6 2 15 3 15

2 2 3 6 6 3

b D
x

a

−  −  −   −  − 
= = = = =


. 

Both solutions are irrational numbers because they contain 15 . 

 

Example 10.5. Solve the quadratic equation 
24 20 25 0x x− + =  by using the quadratic 

formula. 

Solution. The equation is already in standard form. We have 

 4, 20, 25a b c= = − = , so 2 24 ( 20) 4 4 25 400 400 0D b ac= − = − −   = − = . 

The discriminant is zero, so our equation has only one real solution 

( 20) 0 20 5

2 2 4 8 2

b D
x

a

−  − − 
= = = =


. 

Example 10.6. Solve the quadratic equation 
26 5 2 0x x− + =  by using the quadratic 

formula. 

Solution. The equation is already in standard form. We have 

 6, 5, 2a b c= = − = , so 2 24 ( 5) 4 6 2 25 48 23D b ac= − = − −   = − = − . 

The discriminant is negative, so our equation has two complex conjugate solutions 

( 5) 23 5 23 5 23

2 2 6 12 12 12

b D i
x i

a

−  − −  −  
= = = = 


. 
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Exercises 10 
 
In exercises 10.1 and 10.2, fill in blanks to complete the squares. 

 

10.1.  a)  ( )
22 8 __ __x x x+ + = +  

  b)  ( )
22 3 __ __x x x− + = −  

  c)  ( )
22 __ __x x x+ + = +  

  d)  ( )
22 5

__ __
4

x x x− + = −  

 10.2.  a)  ( )
22 6 __ __x x x+ + = +  

  b)  ( )
22 9 __ __x x x− + = −  

  c)  ( )
22 __ __x x x− + = −  

  d)  ( )
22 7

__ __
3

x x x+ + = +  

 
In exercises 10.3 and 10.4, solve the given quadratic equations by completing the 

square. 
 

10.3.  a)  
2 4 5 0x x− − =  

  b)  
2 5 6 0x x+ + =  

  c)  
2 7 8 0x x− + =  

  d)  𝑥2 + 8𝑥 + 21 = 0 

  e)  
22 3 9 0x x+ − =  

 10.4.  a)  
2 2 8 0x x+ − =  

  b)  
2 9 14 0x x− + =  

  c)  
2 3 5 0x x+ − =  

  d)  𝑥2 − 10𝑥 + 28 = 0 

          e)  
23 7 2 0x x+ + =  

 
In exercises 10.5 and 10.6, without solving the equations, determine the number of real 

roots. 
 

10.5.  a)  
27 3 2 0x x− + =  

  b)  
26 9 4 0x x+ − =  

  c)  
23 6 3 0x x− + =  

 10.6.  a)  
24 24 36 0x x+ + =  

  b)  
25 6 3 0x x− + =  

  c)  
28 5 2 0x x+ − =  

 
In exercises 10.7 and 10.8, solve the given quadratic equations using the quadratic 

formula. 

 

10.7.  a)  
25 8 1x x− =  

  b)  
216 24 9 0x x+ + =  

  c)  
24 7 5 0x x− + =  

  d)  
26 17 12 0x x− + − =  

 10.8.  a)  
27 6 3x x− =  

  b)  
29 42 49 0x x− + =  

  c)  
26 5 3 0x x+ + =  

          d)  
212 28 15 0x x− + − =  
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Challenge Problems 
 

10.9. Construct a quadratic equation with real coefficients having the root 2 + 3i. How 

many such equations can you construct? 

10.10.  Consider the equation  √2𝑎𝑥 + 𝑏 − 𝑥 = 0, where a and b are real numbers. Here, 

we will take into account only real solutions. Prove the following statements: 
 

1) If  b > 0, then the equation has one solution. 

2) If  b = 0, then 

2.1) If  𝑎 ≤ 0, then the equation has one solution. 

2.2) If  a > 0, then the equation has two solutions. 

           3)  If  b < 0 and 𝑎 ≤ 0, then the equation has no solutions. 

           4)  If  b < 0 and a > 0, then 

              4.1)  If  𝑏 < −𝑎2, then the equation has no solutions. 

              4.2)  If  𝑏 = −𝑎2, then the equation has one solution. 

              4.3)  If  𝑏 > −𝑎2, then the equation has two solutions. 

             Find solutions in all cases (where the equation has solutions). 

10.11. Find the mistake in the following “Theorem”. 

           Theorem: All numbers are equal. 

            Proof: Let a and b be two numbers. Denote a + b = u. 

1) Multiply both sides of the above equation by a – b: 

                    (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑢(𝑎 − 𝑏). 
 

2) Apply the difference of squares formula to the left side and distribute the right 

side: 

                             𝑎2 − 𝑏2 = 𝑢𝑎 − 𝑢𝑏. 

3) Rearrange the terms: 

                      𝑎2 − 𝑢𝑎 = 𝑏2 − 𝑢𝑏. 

4) Complete the square on both sides by adding 𝑢2/4: 

 𝑎2 − 𝑢𝑎 +
𝑢2

4
= 𝑏2 − 𝑢𝑏 +

𝑢2

4
  ⇒   (𝑎 −

𝑢

2
)

2

= (𝑏 −
𝑢

2
)

2

. 
 

5) Take square root from both sides: 

                    𝑎 −
𝑢

2
=  𝑏 −

𝑢

2
 . 

 
6) Cancel out u/2, then a = b. 
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Session 11 

Parabolas 
 

In this session we will relate the quadratic equation 02 =++ cbxax  to the quadratic 

function cbxaxy ++= 2 . In other words, we will focus not on solving the above equation, 

but rather on the relationship between x and y. The graph of a quadratic function (and the 

function itself) is called a parabola. Recall that for a quadratic equation there are three 

cases about the number of real solutions: it may have one solution, two solutions, or no 

solutions at all. As a graph, the parabola allows us to visualize all three cases, as well as 

some other properties of the quadratic function. 

Let’s start with the simplest (or basic) parabola 2xy = . Notice, first of all, that this function 

takes the same values for x and  –x since ( ) 22
xx =− . Both points ( )2,x x  and ( )2,x x− lie 

on the graph of parabola and they are symmetrical to each other over the 

y-axis. Therefore, if we draw this parabola only for positive x, then we can reflect this graph 

over the y-axis to get the entire picture. 

Another simple property is that for positive x, the bigger x, the bigger 2y x= . We say that 

parabola 2xy =  increases (for positive x). However, this function is not linear: its graph 

is not a straight line. Instead, the graph is a curve. To picture this curve, we can calculate 

several values of the parabola for some values of x. The following table represents one of 

the possible calculations. 

 

x 0 1 2 3 
2xy =  0 1 4 9 

(x, y) (0, 0) (1, 1) (2, 4) (3, 9) 

 

If we plot points (x, y) and connect them with a smooth curve, we will get the picture: 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Graph of the parabola 2y x=  for nonnegative x. 
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To get the entire parabola (to include negative x), we reflect this graph over the 

y-axis. Here is the final picture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s observe this graph. Notice that for negative x parabola is going down from left to 

right (we say that parabola decreases), and for positive x parabola is going up (increases). 

We say that this parabola opens up (or upward). Also, it has the lowest point at the origin 

(0, 0). This point is called the vertex of parabola. 

Now consider the second basic parabola 2xy −= . We do not need any special analysis to 

graph this function. Point ( )2,x x  lies on the graph of parabola 2y x= , and point ( )2,x x−  

lies on the graph of parabola 2xy −= . These two points are symmetrical to each other over 

the x-axis. Therefore, to get the graph of 2xy −= , we can simply reflect the graph of 2xy =  

over the x-axis (flip the graph upside-down). We say that parabola 2xy −=  opens down 

(downward). Here is its graph: 

 

 

 

 

 

 

 

 

 

 

 

 

Now consider the general quadratic function cbxaxy ++= 2 . It turns out that the shape of 

its graph is similar to one of the above graphs of 2xy =  and 2xy −=  (depending on 

whether the leading coefficient a is positive or negative). To understand why, let’s consider 

three types of transformations (deformations) of graphs of the functions. Namely, assume 

2xy =  

2xy −=  
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0 

that we know the graph of )(xfy = , and consider how we can construct graphs of 

functions )(xafy = , ( )y f x k= + , and )( hxfy += . 

1)  Compare the following graphs of 2y x= , 22y x=  and 
21

2
y x= . 

 

 

 

 

 

 

 

 

 

 

As you see, the vertices of all three parabolas remain at the origin and graphs of 22y x=  

and 
21

2
y x=  resemble the parabola 2xy = . To get the graph of 22y x= , we stretch the 

graph of 2xy =  in the y-axis, and to get the graph of 
21

2
y x=  we compress the graph 

of 2xy =  in the y-axis. More generally: the graph of 2axy =  is obtained from the graph 

of 2xy =  by stretching along the y-axis if a > 1 (the graph gets narrower), and by 

compressing along the y-axis if 0 < a < 1 (the graph gets wider). The graph of 2y ax= −  

is obtained from the graph of 2axy =  by reflection over the x-axis. 

For an arbitrary function )(xfy = , we can get the graph of )(xafy =  for positive a in 

a similar way: we stretch or compress the graphs of )(xfy =  along the y-axis 

depending on whether a > 1 or a < 1. So, the shape of the graph of )(xaf resembles the 

graph of )(xf . The graph of ( )y af x= −  is obtained from the graph of )(xafy =  by 

reflection over the x-axis and resembles the graph of y = – f(x).  

2) The graph of ( )y f x k= +  is obtained from the graph )(xfy =  by its shifting along 

the y-axis by k units. If k > 0, the graph is shifted up, and if k < 0  – down. So, the 

transformation ( ) ( )f x f x k→ +  does not change the shape of the graph of )(xf , it 

only changes the position of the graph. 

3) Finally, consider the graph of )( hxfy += . This graph is obtained from the graph of 

)(xfy =  by its horizontal shifting along the x-axis by h units. It is important not to 

mix up the direction of shifting: to the left or to the right. It may seem that for positive 

h the graph is shifted to the right, and for negative h – to the left.  However, this is 

wrong. The correct answer is just the opposite: if h > 0 (h is positive), graph is shifted 

x 

y 

22y x=  

21

2
y x=  

2y x=  

1

2
 

1  

1  

2  

• 

• 

• 
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to the left, and if h < 0 (h is negative), to the right. Here is the reason. Let’s denote 

𝑔(𝑥) = 𝑓(𝑥 + ℎ). For positive h, consider two points 0x  and 1 0x x h= − . Point 1x  lies 

to the left of 0x . At point 1x , function 𝑔(𝑥) takes the value  

𝑔(𝑥1) = 𝑓(𝑥1 + ℎ) = 𝑓(𝑥0 − ℎ + ℎ) = 𝑓(𝑥0), 

which is the same as the value of )(xf  at point 0x . Since 1 0x x , and 𝑔(𝑥1) = 𝑓(𝑥0), 

we have a shift to the left. A similar reasoning is true when h is negative. 

In the case of a parabola, we consider the function ( )
2

y x h= − . Similar to the above 

arbitrary function )(xf , we conclude that the shape of the parabola ( )
2

y x h= −  is 

exactly the same as the shape of 2xy = , and only the location is different: if h > 0, 

( )
2

y x h= −  is located h units to the right of 2xy = , and if h < 0, h units to the left. 

The same is true for functions ( )
2

y x h= − −  and 2xy −= . The vertex of both parabolas 

( )
2

y x h= −  and ( )
2

y x h= − −  has the coordinates (h, 0). 

If we combine together the above three transformations, we see that if a quadratic 

function is written in the squared form ( )
2

y a x h k= − + , then its graph resembles the 

basic parabolas 2xy =  or 2xy −= . In particular, the vertex of the parabola 

( )
2

y a x h k= − +  (i.e. its lowest or highest point) has the coordinates (h, k). The graph 

of this parabola can be obtained from the graph of 2y ax=  by shifting in the vertical 

direction by k  units (up or down) and in the horizontal direction by h  units (left or 

right) as described above. The graph is symmetric over the vertical line that passes 

through its vertex (h, k), so the vertical line x = h is the line of symmetry of the 

parabola. The parabola opens up if a > 0 and opens down if a < 0. 

To graph a parabola that is written in the squared form ( )
2

y a x h k= − + ,  

Use the following steps: 

1) Plot the vertex (h, k). 

2) Draw dotted vertical line through the vertex. This is the line of symmetry of the 

parabola. Its equation is x = h. 

3) If you want to find y-intercept, put x = 0 and calculate y. 

4) If you want to find x-intercepts, solve the equation 𝑎(𝑥 − ℎ)2 + 𝑘 = 0. 

5) Determine whether the parabola opens up or down depending on the sign of the leading 

coefficient a: if  a > 0, it opens up, if a < 0, it opens down. 

6) Draw the parabola. To be more accurate, you may calculate several values of the 

parabola and plot corresponding points. 
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Example 11.1. Graph the parabola ( ) 432
2
++= xy . 

Solution. Let’s follow the above steps. We have a = 2, h = –3, k = 4. 

1) Plot the vertex (h, k) = (–3, 4): 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
2) Draw dotted vertical line of symmetry through the vertex (–3, 4): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Determine how the parabola opens (up or down) by looking at the leading coefficient 

a = 2. It is positive, so parabola opens up. 

4) To draw the parabola more accurately, calculate several values (you may choose any 

values of x, we choose  –1 and –2): 

( ) 124312)1(
2

=++−=−y , so the graph contains the point (– 1, 12). 

( ) 64322)2(
2

=++−=−y , so the graph contains the point (– 2, 6). 

      

 The parabola looks like this 
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Note. It is not needed to always show the dotted line of symmetry. Final picture may look 

like this: 

 

 

 

 

 

 

 

 

 

 

 

 

This graph may also be obtained from the graph of 22y x=  by shifting three units to the 

left and four units up. 

Notice that any quadratic function cbxaxy ++= 2  can be represented in the squared form 

( )
2

y a x h k= − +  (and, therefore, its graph has the same shape as above). Actually, we 

already did this in the previous session, when we discussed the method of the completing 

the square for a quadratic equation.  

Let’s repeat this procedure one more time (with a small modification). We can use these  

 

Steps to transform quadratic function 

 from the general form to the squared from 

1) Divide all term of the equation cbxaxy ++= 2 by a: 

( ) 432
2
++= xy  
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𝑦

𝑎
= 𝑥2 +

𝑏

𝑎
𝑥 +

𝑐

𝑎
 

2) Isolate terms 𝑥2 + 
𝑏

𝑎
 x on the right side (bring the term 

𝑐

𝑎
 to the left side): 

𝑦

𝑎
−

𝑐

𝑎
= 𝑥2 +

𝑏

𝑎
𝑥 

3) Complete the square on the right side using the procedure described in the previous 

session: 

a) Divide coefficient 
a

b
 by 2 and square it: 

𝑏

𝑎
 ÷ 2 = 

𝑏

2𝑎
 ,  

2

22

42 a

b

a

b
=








. 

      b)   Add the term         
𝑏2

4𝑎2
 to both sides of the equation in part 2):  

                        
𝑦

𝑎
−

𝑐

𝑎
+

𝑏2

4𝑎2
= 𝑥2 +

𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
 

c) Complete the square: 

                                     𝑥2 +
𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
= (𝑥 +

𝑏

𝑎
)

2

 

      4)   On the left side of the equation, combine terms        −
𝑐

𝑎
   and 

𝑏2

4𝑎2
∶  

                                             −
𝑐

𝑎
 +

𝑏2

4𝑎2
= −

4𝑎𝑐 − 𝑏2

4𝑎2
 

 
       Equation takes the form 

                                              
𝑦

𝑎
−

4𝑎𝑐 − 𝑏2

4𝑎2
= (𝑥 +

𝑏

𝑎
)

2

 

5) Solve this equation for y: 

a)   
𝑦

𝑎
= (𝑥 +

𝑏

𝑎
)

2

+
4𝑎𝑐 − 𝑏2

4𝑎2
 

 

b)   𝑦 = 𝑎 (𝑥 +
𝑏

𝑎
)

2

+
4𝑎𝑐 − 𝑏2

4𝑎
 

We have written the parabola cbxaxy ++= 2
in the squared form ( )

2
y a x h k= − + , where 

   
2

b
h

a
= − ,  

24

4

ac b
k

a

−
= . 
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Actually, to draw the graph of the parabola cbxaxy ++= 2 , you do not need to go through 

the above steps every time. Just memorize the most important formula for h, which is 

the x-coordinate of the vertex of parabola. We will denote it by vx : 
 
 

 

 

 

This is the first coordinate for the vertex (h, k). The second coordinate k we will denote by 

𝑦𝑣:  

𝑦𝑣 =
4𝑎𝑐 − 𝑏2

2𝑎
 

 

This formula is more complicated, and you do not need to memorize it. The coordinate vy  

can be calculated by substitution the value of vx  for x in the original parabola 

cbxaxy ++= 2 . Here are possible  

 

Steps to graph the general parabola 𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 

1) Identify coefficients a, b, and c. 

2) Calculate the x-coordinate vx  of the vertex of the parabola by the formula: 
a

b
xv

2
−=  

or by the competing the square. 

3) Calculate the y-coordinate vy  of the vertex by substituting vx  in the original equation. 

4) Follow the above steps for graphing the parabola ( )
2

y a x h k= − + , where   

ℎ = 𝑥𝑣,  𝑘 = 𝑦𝑣. 

Example 11.2. Graph the parabola 582 2 −+−= xxy . 

Solution. 

1) Identify the coefficients a, b, and c: a = –2, b = 8, c = –5. 

2) Calculate the x-coordinate of the vertex: 2
)2(2

8

2
=

−
−=−=

a

b
xv . 

3) Calculate the y-coordinate of the vertex by substitution 2=vx  in the original 

equation: 352822 2 =−+−=vy . 

So, the vertex of the parabola has the coordinates (2, 3). 

4) Draw the parabola according to the steps described for the squared form 

( )
2

y a x h k= − + . In particular, parabola opens down (because a = –2 < 0) and has a 

vertical line of symmetry that passes through the vertex (2, 3). Also (for more 

accuracy), we can calculate the values  y (0) = –5, and y (1) = 1. Here is the picture.  

 

a

b
xv

2
−=  
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Note. In order to plot the parabola more accurately, you may want to find the x- and  

y-intercepts. It is easy to find the y-intercept. Indeed, any point on the y-axis has the first 

coordinate zero, so just substitute x = 0 into the function cbxaxy ++= 2 , and you will find 

that the y-intercept is equal to c. To find x-intercepts, substitute y = 0 and solve the quadratic 

equation 
2 0ax bx c+ + = . 

 
Consider in more details how parabola shows possible cases about the number of real 

solutions (roots) to the equation 02 =++ cbxax . In general, solving the equation 0)( =xf  

means to find all values of x for which the function )(xfy =  takes the value of zero: 

y = 0. Geometrically, points (x, 0) lie on the x-axis. Therefore, roots of the equation 

0)( =xf  are x-coordinates of points of intersection of the graph of )(xfy =  with the 

x-axis. Thus, geometrically solving the equation f(x) = 0 is equivalent to finding all 

x-intercepts of the graph of the function )(xfy = . 

In particular, to find real solutions to the quadratic equation 02 =++ cbxax , we need to 

find all x-intercepts of the parabola cbxaxy ++= 2 . We consider the case a > 0 (parabola 

opens up). The case a < 0 is similar. Obviously, there are only three possible positions of 

the parabola with respect to x-axis: 

1) The vertex of the parabola is located below x-axis. In this case there are two 

x-intercepts, so there are two roots of the quadratic equation. 

2) The parabola touches the x-axis at one point (at the vertex), so there is only one root. 

3) The parabola is located above x-axis. In this case, no x-intercepts, so no real roots. 

Here are the corresponding pictures: 

 

 

 

 

 

 

582 2 −+−= xxy  
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         Two roots   One root   No roots 

For example, parabola 2 4y x= −  has two roots 2 and  –2 (since y (2) = y (–2 ) = 0), parabola 
2y x=  has only one root 0, and parabola 2 4y x= +  does not have roots at all (since the 

equation 
2 4 0x + =  does not have real solutions). 
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Exercises 11 
 

In exercises 11.1 and 11.2, 

1) Identify the coordinates of the vertex of given parabola. 

2) Determine whether the parabola opens up or down. 

 

11.1.  a)  23( 4) 5y x= + −  

  b)  24( 2) 6y x= − − +  

  c)  27( 5) 4y x= − −  

 11.2.  a)  25( 3) 7y x= − − +  

  b)  26( 7) 3y x= + −  

          c)  22( 1) 8y x= − + +  

 

In exercises 11.3 and 11.4, the given graphs are shifted graphs of the parabola 23y x= . 

Write the equations for the parabolas graphed below, 

1) In squared form 2( )y a x h k= − + . 

2) In general form 2y ax bx c= + + . 

 

11.3. 

                     a)              b) 
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11.4.  

                                 a)                       b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In exercises 11.5 and 11.6, the given graphs are shifted graphs of the parabola 22y x= − . 

Write the equations for the parabolas graphed below, 

1) In squared form 2( )y a x h k= − + . 

2) In general form 2y ax bx c= + + . 

 

11.5. 

                 a)                 b) 
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11.6. 

             a)                                         b) 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

In exercises 11.7 and 11.8, for each of the quadratic functions 

1) Find the vertex of the parabola with the coordinates. 

2) Find the y- intercept. 

3) Find the x- intercepts if they exist. 

4) Write the equation of the line of symmetry. 

5) Graph the parabola. 

6) Label the vertex and indicate its the x- and y- coordinates. 

 

11.7.  a)  2 2 3y x x= − −  

b)  2 4 5y x x= − − +  

 11.8.  a)  2 2 8y x x= − − +  

          b)  2 6 5y x x= − +  

 

Challenge Problems 
 

11.9. Let the x-intercepts of a parabola be (2, 0) and (4, 0). Find the equation of the line of 

symmetry of the parabola. 

 

11.10. Let the equation of the parabola’s line of symmetry be x = 5, and one of the 

 x-intercepts is (3, 0). Find another x-intercept. 
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x 

y 

 

 

 

  

A 

B 
 

C 

Session 12 
 

Distance Formula, Midpoint Formula, and Circles 
 

When we say that a point in the xy-plane is given we mean that coordinates of the point are 

given. If A is a point in the plane and (x, y) are its coordinates in the coordinate system, 

then we will also denote this point by ( , )A x y . 

Distance Formula 

Assume two points 1 1( , )A x y  and 2 2( , )B x y  are given. Consider the problem to find the 

distance between them (i.e. to get a formula for this distance). 

Recall that if we plot a point 0 0( , )C x y  in the coordinate system, then 0x  is the horizontal 

coordinate (along the x-axis), and 0y  is the vertical coordinate (along the y-axis):   

 

 

 

 

  

Now consider two points 1 1( , )A x y  and 2 2( , )B x y : 

 

 

 

 

 

 

 

 
 
We denote by ( , )d A B  the distance between points A and B (i.e. the length of the line 

segment AB). Also, we will use the notation AB , so ( , )d A B AB= . To find this distance, 

we draw a right triangle with the hypotenuse AB and horizontal and vertical legs AC and 

BC:  

 

 

 

 

 

 

 

 
 

y 

x 

• 

 

 

 

 

x 

y 
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We can see that 2 1AC x x= −  and 2 1BC y y= − . By the Pythagorean Theorem, 

( ) ( )
2 22 2 22

2 1 2 1( , )d A B AB AC BC x x y y= = + = − + − . 

By taking square root of both sides, we get the Distance Formula: 

 

                                         ( ) ( )
2 2

2 1 2 1( , )d A B x x y y= − + −  

 

Here 1 1( , )x y  and 2 2( , )x y  are coordinates of the points A and B respectively. 

Note. The distance formula will not change, if we switch (exchange) 1x  and 2x , and/or 1y  

and 2y . The reason is that if a and b are two numbers, then 2 2( ) ( )a b b a− = − . Also, the 

distance formula is valid for points located in any quadrant (not only in the 1st quadrant). 

Example 12.1. Calculate the distance between points (2, 3)A −  and ( 5, 7)B − − . 

Solution. By the distance formula we get: 

( ) ( ) ( ) ( )
2 2 2 2 2 22 ( 5) 3 ( 7) 2 5 3 7 7 4 49 16 65AB = − − + − − − = + + − + = + = + = . 

Later, in Session 18 “Solving Oblique Triangles – Law of Cosines”, in Example 18.4 we 

will justify a method for checking whether a triangle with given sides a, b, and c is acute, 

obtuse or a right triangle. Here are the pictures of such triangles: 

 

 

 
 
                      Acute triangle             Right triangle                  Obtuse triangle 

The method is the following: 

Let c be the biggest side of the triangle. Calculate the value 
222 cbaE −+= . 

 If E > 0, then the triangle is acute. 

 If E < 0, then the triangle is obtuse. 

 If E = 0, then the triangle is right. 
 
Example 12.2. Consider a triangle ABC with vertices (2, 3), ( 5, 7)A B− − −  and ( 2, 6)C − . 

Determine what kind of triangle it is: acute, obtuse, or a right triangle. Also, determine 

which angle in the triangle ABC is the biggest angle, and which angle is the smallest one. 

Solution. First, we calculate squares of all three sides of triangle ABC (there is no need to 

calculate the sides themselves because the above expression for E contains squares of sides 

only). The length of the side AB we have already calculated in Example 12.1, so 
2

65.AB =  

Using the distance formula for the sides AC and BC we get: 

( ) ( ) ( ) ( )
2 2 2 22

2 ( 2) 3 6 2 2 9 16 81 97AC = − − + − − = + + − = + = , 
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( ) ( ) ( ) ( )
2 2 2 22

5 ( 2) 7 6 5 2 13 9 169 178BC = − − − + − − = − + + − = + = . 

We see that side BC is the longest one. Now we can construct the above expression for E:  

  
2 2 2

65 97 178 16E AB AC BC= + − = + − = − . 

Since E is negative, we conclude that the triangle ABC is obtuse. In any triangle, the larger 

the side, the greater the opposite angle. In our case, the largest side is BC, and the smallest 

side is AB. Therefore, the largest angle is at A, and the smallest one is at C. 

 

Midpoint Formula 
 
Let A and B be two points. The midpoint formula gives the coordinates of the point C 

located in the middle of the line segment AB. To get these coordinates, consider first the 

simplest case when points A and B lie on the number line (i.e. on the horizontal x-axis): 

 

 

Here point C is the midpoint of the segment AB. The location of any point on the number 

line is determined by its coordinate (a number). Let a, b and c be the coordinates of points 

A, B and C respectively. The distance between the points A and B (i.e. the length of the 

segment AB) is AB b a= − . It is easy to show that the coordinate c of the midpoint C is 

the average of coordinates a and b: 
2

a b
c

+
= . Indeed, with this coordinate, the distance 

AC  is half of the distance AB : 

          
2

2 2 2 2

ABa b a b a b a
AC c a a

+ + − −
= − = − = = = . 

Now, let the points A, B and the midpoint C lie in the plane and have coordinates 

1 1 2 2( , ), ( , )x y x y  and ( , )m mx y  respectively: 

 

 

 

 

 

 

 
 

We see that mx  is the midpoint of the segment 1 2[ , ]x x  on the  x-axis, and my  is the midpoint 

of the segment 1 2[ , ]y y  on the y-axis. Therefore, mx  is the average of 1x  and 2x , and my  is 

the average of 1y  and 2y . We thus obtained the Midpoint Formula: 

 

 
 

A C B 
x 

x 

y 

A 

  

 

 

 

B 

C 
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1 2 1 2,
2 2

m m

x x y y
x y

+ +
= =  

 

In words, coordinates ( , )m mx y  of the midpoint C of the line segment AB are averages of 

the corresponding coordinates of the endpoints 1 1( , )A x y  and 2 2( , )B x y . 

 

Example 12.3. Calculate the coordinates of the midpoint of the line segment with 

endpoints ( 3, 4)−  and ( 7,10)− . 

Solution. Let ( , )m mx y  be coordinates of the midpoint. By the midpoint formula 

        
3 ( 7) 10

5
2 2

mx
− + − −

= = = −  and 
4 10 14

7
2 2

my
+

= = = . 

Answer: the midpoint has coordinates ( 5,7)− . 

Example 12.4. Let (4, 7)A −  be the endpoint of a line segment, and ( 6, 9)C −  be its 

midpoint. Find the coordinates of the other endpoint of the line segment. 

Solution. Denote the other endpoint by ( , )B x y . We will use the midpoint formula with 

the given midpoint ( 6, 9)C − , so 6mx = −  and 9my = . We have 

4
6 12 4 16,

2
m

x
x x x

+
= − =  − = +  = −  

7
9 18 7 25.

2
m

y
y y y

− +
= =  = − +  =  

Answer: endpoint B has coordinates ( 16, 25).−  

 

Circle 

By definition, a circle is a set of points in the plane equidistant (having the same distance) 

to a fixed point in the plane. This fixed point is called the center of the circle, and the 

distance from any point on the circle to the center is called the radius. 

Equation of a circle can be easily derived directly from the distance formula. Let ( , )C a b  

be a center of a circle, and ( , )A x y  be any point on the circle. If r is the radius of the circle, 

then, by definition, ( , ) .d A C r=  

 

 

 

 

 

 

By the distance formula, ( ) ( )
2 2

( , )d A C x a y b r= − + − = . Square both sides, and get  

A r 

C 

x 

y 
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Equation of the Circle: 

 

     ( ) ( )
2 2 2x a y b r− + − =  

This equation is called the equation of circle in standard form. Here ( , )a b  are coordinates 

of the center of the circle, and r is its radius. 

 

Example 12.5. Identify the center and the radius of the circle ( ) ( )
2 2

3 5 15x y− + + = . 

Solution. This equation is given in standard form, and we immediately get the answer: the 

center has coordinates (3, 5)− , and the radius is 15 . 

Note. Notice that in the above example, the second coordinate of the center is 5− , not 5. 
This is because according to the equation of circle, we have 5 ( 5)y b y y− = + = − − , so 

5b = − . Also, the radius is equal to 15 , but not 15, since the number 15 is the square of 

the radius: 
2 15r = . 

 
Equation of a circle may be given in a non-standard form. In this case, to identify the center 

and the radius of this circle, we represent the equation of circle in the standard form first. 

To achieve this, we can apply the completing the square technique. As a review, you may 

take a look at Session 10 “Completing the Square. The Quadratic Formula”. 

 

Example 12.6. Identify the center and radius of the circle given by the equation 

    2 2 8 10 32 0x y x y+ + − + = . 
 
Solution. We reorganize the terms and write the equation like this 

   ( ) ( )2 28 10 32 0x x y y+ + − + = . 

 Now complete the square for both x and y. According to the procedure for completing the 

square that we described in Session 10, in each pair of parentheses we divide coefficients 

for x and y by 2 and square them: 2 2(8 / 2) 16, ( 10 / 2) 25.= − =  Then we add 16 and 25 to 

both sides of the equation: 

( ) ( ) ( ) ( )
2 22 28 16 10 25 32 16 25 4 5 32 41,x x y y x y+ + + − + + = +  + + − + =

( ) ( ) ( ) ( )
2 2 2 2

4 5 41 32 4 5 9.x y x y+ + − = −  + + − =  
 
We obtained the equation of the circle in the standard form. From here, the coordinates of 

the center are ( 4, 5)−  and the radius is 3. 

 
Example 12.7. Let ( 4,3)A −  and ( 6,9)B −  be the endpoints of a diameter of a circle. Find 

the equation of the circle in the standard form. (Diameter of a circle is a line segment that 

passes through the center and whose endpoints lie on the circle). 
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Solution. First, let’s find the coordinates of the center ( , )C a b  of the circle. The center is 

the midpoint of the diameter AB. Using the Midpoint Formula, we have 

4 ( 6) 10
5

2 2
a

− + − −
= = = − ,     

3 9 12
6

2 2
b

+
= = = . 

So, the center has the coordinates ( 5, 6)− . Next, we will find the radius r of the circle. It 

is equal to the distance from the center of the circle to any point on the circle. To calculate 

the radius, we can take any of the given points: A or B. Let’s take the point ( 4,3)A −  and 

calculate 𝑟 = 𝑑(𝐶, 𝐴). Using the Distance Formula, we have 

( ) ( ) ( )
2 2 2 2 2 2( 5) ( 4) 6 3 5 4 3 ( 1) 9 1 9 10 10r r= − − − + − = − + + = − + = + =  = . 

Now, using the coordinates ( 5, 6)−  of the center of the circle and the square of its radius, 

which is 10, we can write the equation of the circle in the standard form: 

                      ( ) ( )
2 2

( 5) 6 10x y− − + − = , or ( ) ( )
2 2

5 6 10x y+ + − = . 

 

Example 12.8. Graph the circle from example 12.6 and label four points on the circle. 
 
Solution. In example 12.6, we found that the center of the circle is ( 4, 5)−  and its radius 

is 3. We use this information to graph the circle via the following steps: 

1) Plot the center ( 4, 5)− . 

2) From the center, draw dotted horizontal and vertical lines. 

3) Along these lines, count 3 units (which is radius) starting from the center in all four 

directions: up, down, left and right. Mark the four corresponding points as A, B, C, 

and D. These points lie on the circle. 

4) Draw the circle through the points A, B, C, and D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The points A, B, C, D have coordinates ( 4, 8), ( 4, 2), ( 7, 5),A B C− − − and ( 1, 5).D −  

y 

x 
–1  –2 –3 –4 –5 –6 –7 

1  

2  

3  

4  

5  

6  

7  

8  

0  

A  

B  

D C 
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Exercises 12 
 

In exercises 12.1 and 12.2, calculate the distance between the given points. 

 

12.1.  (5, 4)  and ( 1, 2)−   12.2.  ( 2, 5)−  and ( 3, 12)−  

 

In exercises 12.3 and 12.4, three vertices A, B and C of the triangle ABC are given. 

1) Determine what kind of triangle it is: acute, obtuse, or a right triangle. 

2) Determine which angle in the triangle ABC is the largest, and which angle is the 

smallest. 

(You may want to review Example 12.2) 
 
12.3.  ( 2, 3), (5, 2), (6, 5)A B C− − −   12.4.  ( 2, 4), ( 7, 1), (4, 2)A B C− − − −  
 
In exercises 12.5 and 12.6, calculate the coordinates of the midpoint of the line segment with 

given endpoints. 

 

12.5.  (3, 4)−  and ( 5, 6)− −   12.6.  (4, 5)−  and (2, 7)  
 
In exercises 12.7 and 12.8, C is the midpoint of the line segment AB. The coordinates of points 

A and C are given. Find the coordinates of the point B. 
 
12.7.  ( 9, 7), ( 4, 5)A C− −   12.8.  (5, 8), ( 1, 3)A C −  

 
In exercises 12.9 and 12.10, identify the coordinates of the center and the radius of the given 

circles. 

12.9.  a)  ( ) ( )
2 2

2 4 36x y+ + + =  

          b)  ( ) ( )
2 2

5 2 20x y+ + − =  

 12.10.  a)  ( ) ( )
2 2

6 3 49x y− + − =  

          b)  ( ) ( )
2 2

7 8 50x y− + + =  

   

In exercises 12.11 and 12.12, points A and B are given endpoints of a diameter of a circle. Find 

the equation of the circle in standard form ( ) ( )
2 2 2x a y b r− + − = . 

 
12.11.  (2, 8), ( 8, 16)A B − −   12.12.  (20, 25), (4, 5)A B −  

 
In exercises 12.13 and 12.14, equations of circles are given. For each circle 

1) Find the coordinates of the center and the radius. 

2) Graph the circle.  

3) Label four endpoints of vertical and horizontal diameters with their coordinates. 
 

12.13.  a)  
2 2 4 2 11 0x y x y+ + − − =  

            b)  2 2 10 8 32 0x y x y+ − − + =  

 12.14.  a)  
2 2 8 2 8 0x y x y+ − + + =  

          b)  2 2 6 4 12 0x y x y+ + + − =  
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Session 13 
 

Nonlinear Systems of Equations in Two Variables 
 
We now consider examples of systems of two equations with two variables in which one 

or both equations are not linear. We also give a geometrical interpretation of that solutions.  

Example 13.1. Solve the system of equations 




−+=

=+

84

6

2 xxy

yx
 

Solution. Notice that the first equation is linear, while the second is not (since it contains 
2x ). We can easily solve the first (linear) equation for x or y and substitute this expression 

into the second (nonlinear) equation. As a result, the second equation will contain only one 

variable. This method is called the substitution method. Just looking at the first equations, 

it seems that it does not matter for which variable to solve: for x or for y. However, it does 

matter for the second equation. If we solve the first equation for x, then we need to 

substitute this expression in the second equation for both 
2x  and x, which is a bit involved. 

It is more suitable to solve the first equation for y. In this case we substitute this expression 

into the second equation for y, and we don’t need to square any expression. 

So, solve the first equation for y: xy −= 6 . Substitute this expression into the second 

equation, and get a quadratic equation in the variable x: 

846 2 −+=− xxx . 

Solve this equation: 

26 4 8x x x− = + −    
2 4 8 6 0x x x+ − − + =    

2 5 14 0x x+ − =  

 ( 2)( 7) 0x x − + =     x = 2 and x = –7.  

Now, using the expression xy −= 6 , find the corresponding values of y: if 2=x , then 

y = 6 – 2 = 4, and if  x = –7, then y = 6 – (–7) = 13. 

Final answer: the system has two solutions: x = 2, y = 4, and x = –7, y = 13. Or, as a solution 

set,  )13,7(),4,2( − . 

Note. We can interpret the above solutions geometrically using graphs of the given 

equations. The graph of the first equation is a straight line, and the graph of the second 

equations is a parabola. Solutions of the system are the coordinates of the intersection 

points of these two graphs. According to the final answer, the straight line and the parabola 

intersect each other at two points with the coordinates (2, 4) and (–7, 13). Here is the 

corresponding picture: 
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Example 13.2. Solve the system of equations 






−+=

+−=

46

143

2

2

xxy

xxy
. 

Solution. In this example both equations are nonlinear, and both are solved for y. We can 

use different methods to solve this system. For example, we can equate the right sides of 

both equations. We can also eliminate y by subtracting one of the equations from the other. 

Using this method, subtract the first equation from the second and get 

0 = 𝑦 − 𝑦 = 𝑥2 + 6𝑥 − 4 − (𝑥2 − 3𝑥 + 14) = 𝑥2 + 6𝑥 − 4 − 𝑥2 + 3𝑥 − 14 

= 9𝑥 − 18 

 0 9 18 9 18 2x x x = −  =  = . 

To find y, we can substitute x = 2 into any equation of the system. Substituting it into the 

first equation, we get 

    121464142322 =+−=+−=y . 

Final answer: the system has one solution x = 2, y = 12, or as a pair (2, 12), or as a solution 

set  (2, 12) . 

Note. As in example 13.1, we can interpret the above solution geometrically. The graphs 

of both equations of the system are parabolas. According to the final answer, these 

parabolas intersect each other only at one point (2, 12): 

 

 

 

 

 

 

(2, 4) 
(– 7, 13) 

(2, 12) 

2 3 14y x x= − +  

2 6 4y x x= + −  

113



 

Session 13: Nonlinear Systems of Equations in Two Variables 

Example 13.3. Solve the system of equations 

2 2

2 2

3 2 14

2 5 13

x y

x y

 + =


+ =
. 

Solution. Notice that in this system both variables, x and y, are in the second power only. 

We may temporarily use new variables u and v: 2 2,u x v y= = . Then, in terms of u and v, 

we have a linear system 

    {
3𝑢 + 2𝑣 = 14
2𝑢 + 5𝑣 = 13

 

Solve this system by the elimination method (for example, eliminate the variable u): 

           
3 2 14 6 4 28

2 5 13 6 15 39

u v u v

u v u v

+ = − − = − 
 

+ = + = 
. 

Add the last two equations to eliminate u and solve for v: 11 11 1v v=  = . Substitute this 

value into the first equation of the system, and solve for u: 

3 2 1 14, 3 2 14, 3 12, 4u u u u+  = + = = = . 

So, u = 4 and v = 1. Now, we need to return from u and v to the original variables x and y. 

We have 2 4x u= = . From here, 4 2x =  =  . So, we obtained two values for x: 2 and 

–2. Similarly,  2 1 1 1y v y= =  =  =  . We have two values of y: 1 and  –1. 

From this point, be very careful to write the final answer correctly. Any solution of the 

given system is a pair (x, y). Therefore, we need to combine each value of x with each value 

of y. As a result, the original system has four solutions: 

         {(2, 1),  (2, –1),  (–2, 1),  (–2,–1)}. 

Note. It can be shown that graphs of the equations in the given system are ellipses 

(“stretched” circles centered at the origin (0, 0)). The answer to the problem tells us that 

these two ellipses intersect each other at the above four points: 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

–2 

  3 

(– 2, 1) 

(2, –1) (– 2, –1) 

(2, 1) 

2 23 2 14x y+ =  

2 22 5 13x y+ =  
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Example 13.4. Solve the system of equations 
2 22 15

y x

x y

 =


+ =
. 

Solution. Here both equations are non-linear. Square the first equation:
2y x= . Substitute 

this expression into the second equation and get a quadratic equation in x: 

2 22 15 2 15 0 ( 3)( 5) 0x x x x x x+ =  + − =  − + = . 

From here we get two solutions of the quadratic equation: x = 3 and x = – 5. Now we can 

use the first equation to find the corresponding values of y. 

For x = 3, 3y = . So, one solution is the pair ( )3, 3 . For x = – 5, 5y = − . In this 

session, we consider only real numbers. Because 5−  is not a real number, we reject it. 

Final answer: the original system has only one solution ( )3, 3 . 

Note. Geometrically, the graph of the first equation is a curve, which has the shape of half 

of a parabola that “lies on its side”: it is going not along the y-axis, but along the x-axis, 

and its graph is located above the x-axis. The second equation is the ellipse with the center 

in origin. Both curves intersect each other only at one point: 

 

 

 

 

 

 

 

 

 

Example 13. 5. The area of a rectangular region is 96 square feet, and the perimeter is 40 

feet. Find the dimensions of the region (i.e. find its length and width). 

Solution. As for most word problems, we will solve it in two steps: set up the equations 

for the values in question, and then solve these equations. Also, check that the solution(s) 

make sense. 

1) Let x be the length of the rectangle, and y be its width. Then 96=xy  (area of the 

rectangle), and 2x + 2y = 40 (perimeter of the rectangle). We get the following system 

of equations: 





=+

=

4022

96

yx

xy
 

2) We can simplify the second equation by dividing both sides by 2: 

( )3, 3  
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=+

=

20

96

yx

xy
. 

Here the second equation is a linear one, and we can easily solve it for x or y. Let’s 

solve it for y: xy −= 20 . Substituting this expression into the first equation, we obtain 

x(20 – x) = 96,  or 9620 2 =− xx . This is a quadratic equation that can be rewritten in 

the standard form 096202 =+− xx . We can solve it by factoring: 

( )8)( 12 0 8x x x− − =  =  and 12x = . 

We can get the corresponding value of y from the expression xy −= 20 . If x = 8, then 

12820 =−=y . If 12=x , then 81220 =−=y . 

Note. It looks like we have found two solutions: x = 8, y = 12, and x = 12, y = 8. These are 

two solutions of the system of equations. However, for the original problem that asks about 

the dimensions of the rectangle, these two solutions simply mean that one side of the 

rectangle is 8 feet, and the other is 12 feet. Assuming that the length is greater than the 

width, we come up to a unique solution. 

Final answer: the length of the rectangle is 12 feet, and the width is 8 feet. 
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Exercises 13 
 

 

In exercises 13.1 and 13.2, solve the systems of equations (find all real solutions). 

 

13.1.  a)  
2

3 1

2 5

x y

x y

− =


+ =
 

 b)  

2

2

5 2

3 26

x y y

x y y

 = + −


= − −

 

       c)  
2 2

0

5 36

x y

x y

 + =


− =

 

       d)  
2 2

2 3

3 2

x y

x y

− =


− = −
 

       e)  

2 2

2 2

2 34

5 3 93

x y

x y

 + =


+ =

 

       f)  

2 2

2 2

2 7

4 3 31

x y

x y

 − = −


+ =

 

 
13.2.  a)  

2

4 2

3 19

x y

x y

+ =


+ =
 

    b)  

2

2

6 2

3 16

x y y

x y y

 = + −


= + +

 

    c)  
2 2

0

3 4

x y

x y

 − =


− =

 

    d)  
2 2

3 2

8 4

x y

x y

+ =


− =
 

    e)  

2 2

2 2

5 3 28

3 2 44

x y

x y

 − = −


+ =

 

    f)  

2 2

2 2

3 37

5 2 70

x y

x y

 + =


+ =

 

 

In exercises 13.3 and 13.4,  A represents the area of a rectangular region, and P represents its 

perimeter. Find the dimensions of the region (i.e. find its length and width, assuming that the 

width does not exceed the length). 

 

13.3.  A = 12 m2, P = 14 m.  13.4. A = 30 yd2, P = 22 yd . 
 

Challenge Problems 

 

13.5.  Consider the system of equations 
2 2 2

x y a

x y b

+ =


+ =
, where 0a   and 0b  . 

    Prove the following statements: 

1) If 2a b , then the system does not have solutions. 

2) If 2a b= , then the system has one solution. 

3) If 2a b , then the system has two solutions.  

Interpret these results geometrically. 
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13. 6. Consider the system of equations   {
√𝑥 − 𝑦 = 0                           

𝑥2 − (𝑎 + 𝑏)𝑦2 + 𝑎𝑏 = 0
 

          Prove the following statements: 
 

1) Let 𝑎 < 0. 

a) If 𝑏 ≥ 0, then the system has one solution (𝑏, √𝑏). 

b) If 𝑏 < 0, then the system does not have solutions. 
 

2) Let 𝑎 = 0. 

a) If 𝑏 > 0, then the system has two solutions (0, 0) and (𝑏, √𝑏). 

b) 𝑏 ≤ 0, then the system has one solution (0, 0). 
 

3) Let 𝑎 > 0. 

a) If 𝑏 < 0, then the system has one solution (𝑎, √𝑎). 

b) If 𝑏 = 0, then the system has two solutions (0, 0) and (𝑎, √𝑎). 

c) If 𝑏 > 0 and 𝑏 = 𝑎, then system has one solution (𝑎, √𝑎). 

d) If 𝑏 > 0 and 𝑏 ≠ 𝑎, then the system has two solutions (𝑎, √𝑎) and (𝑏, √𝑏). 

 

13.7.  Solve the system of equations 
2 ( )

ax y b

x cy d d ac bc

− =


+ = + −
. 

          Hint: Check that the quadratic equation 2 ( ) ( )x c ax b d d ac bc+ − = + −  has roots d 

                    and  –d – ac. 
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Trigonometric Functions 
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Session 14 
 

Geometric and Trigonometric (Oriented) Angles 
 

Historically, trigonometry studies the relationships between angles and sides of triangles. 

In Greek, the word “Trigonometry” literally means “Triangle-Measurement”. 

It is important to understand that in geometry and trigonometry we treat angles in different 

ways. 

In geometry, an angle is simply a figure that is formed by two rays coming from a common 

point, called the vertex of the angle.  

Also, we assign the measure to an angle as some positive number. A common measure is 

the degree measure. If you cut a round pizza-pie (theoretically) into 360 equal slices, the 

angle in one slice is of one degree: 
1 . 

Here are examples of angles (letter m means the measure of an angle): 

 

 

 

Acute Angle ( 𝑚 < 90°)          Right Angle (𝑚 = 90°)          Obtuse Angle ( 𝑚 < 90°) 

 

In trigonometry, we extend the meaning of an angle by assigning to it the “direction of 

rotation” and, as a result, the sign of its measure. That means that we assign to angles not 

only positive measure, but also negative. We can do this in the following way. Consider 

“geometric” angle 

 

 

 

 
 
 

Let’s call one of its sides the initial side, and the other – terminal side. Let’s say, the 

horizontal side is the initial, and the slant side is the terminal. 
 
We can treat this angle as a result of rotation of the terminal side when it starts from the 

position of initial side and then rotates to its current position. To rotate, we have two 

directions: clockwise and counterclockwise. We can mark these two directions of rotation 

by arrows: 

 

 

 

 

 

Initial side 

Terminal side 
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As a matter of convention, a positive measure of an angle is assigned if the direction of 

rotation is counterclockwise, and a negative measure if the direction of rotation is 

clockwise. On the left figure above, the angle is positive, and on the right – negative. As 

you can see, taking just one “geometric” angle (two rays, coming from the same point), we 

can consider two “trigonometric” (or oriented) angles: one is positive, and another is 

negative depending on the direction in which we rotate the terminal side. Even more, we 

can assign to a given “geometric” angle infinitely many “trigonometric” angles making 

multiple full rotations of the terminal side in either direction. All such “trigonometric” 

angles have the same position of the terminal side, and they are called coterminal angles. 

In the figures above, the two angles are coterminal. 

Example 14.1. Consider the angle of 40 : 

 

 

 

 

 

Describe all coterminal angles for this angle. 

Solution. If we make one full rotation (rotation by 
360 ) of the terminal side in either 

direction, the terminal side returns to its original position, and we obtain coterminal angle 

(i.e. the same “geometric” angle). We get the same result, if instead of one rotation, we 

make n full rotations (i.e. rotations by 360 n ). All such angles are coterminal to 40  

angle and their values are described by the parametric formula 40 360 n+  , where 

parameter n is any integer (positive, negative, or zero). We can write that 0, 1, 2,...n =  

. For positive n, we get positive values of the angle, and for negative n – negative values. 

For example, if we put 1=n  and 1−=n , we get two specific coterminal angles: 

40 360 400+ =  and 40 360 320− = − . 
 

Two Special Right Triangles and Three Special Angles 

In trigonometry, we often use the following two right triangles: one is a half of an 

equilateral triangle, and another is a half of a square: 

 

Counterclockwise rotation: 

       angle is positive. 

Clockwise rotation: 

  angle is negative. 

40  

Initial side 

Terminal side 
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In the triangle ABC on the left picture, the acute angles are of 
30  and 

60 . We will call 

such triangle a 
 6030 −  triangle. In the triangle ABC on the right picture, both acute angles 

are of 
45 . We will call such triangle a 

 4545 −  triangle. Both triangles: 
 6030 −  and 

 4545 − , are called special right triangles, and angles 
30 , 

45  and 
60  are called 

special angles. 

Let’s consider special triangles in more details. For both, we will use the Pythagorean 

Theorem that states that for any right triangle with the hypotenuse c and legs a and b, the 

following equation is true: 

       
222 cba =+ . 

We will also use this theorem in the forms: 

    
2 2 2 2 2 2, ,c a b a c b b c a= + = − = − . 

o o30 60−  Triangle 

 

Let’s draw the triangle like this 

 

 

 

 

                                              

Recall that side c is the side of drawn above equilateral triangle, so side a is the half of side 

c: 
2

c
a =  or c = 2a. Try to remember this fact:  

 

 

 

Example 14.2. Consider 
 6030 −  triangle with legs a, b and hypotenuse c (see picture 

above). Solve the following problems. 

 

 

b 

a 
c 

A 

B 

C 

b 

a 

c 

A 

B 

C 

a 

b 

c 

       is a half 

of an equilateral triangle 

 is a half 

    of a square 

In any 
 6030 −  triangle, the leg opposite to 

30  is the half of the hypotenuse 

(or the hypotenuse is twice as this leg). 
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a 
2a 

 

 

b 

𝑏ξ3

3
 

2𝑏ξ3

3
 

 

 
𝑐

2
 

c 

1) a = 7. Find b and c. 

2) b = 5. Find a and c. 

3) c = 10. Find a and b. 

Solution. In all problems, side a is opposite to 
30  angle. Therefore, c = 2a. 

1) 2 2 7 14c a= =  = . By the Pythagorean Theorem 

2 2 2 214 7 196 49 147 49 3 7 3b c a= − = − = − = =  = . 

2) By the Pythagorean Theorem 
2 2 2c a b= +  and c = 2a. Therefore, 

( )
2

22 2 2 2 2 2 2 2 2 25
2 4 3

3 3

b
c a a b a a b a b a= = +  = +  =  = = . 

 
25 5 5 3 10 3

, 2
3 3 33

a c a= = = = = . 

3) Again, c = 2a, so 
10

5
2 2

c
a = = = . By the Pythagorean Theorem 

2 2 2 210 5 100 25 75 25 3 5 3b c a= − = − = − = =  = . 

Let’s describe the connection between sides of 
 6030 −  triangle in general form. Let a be 

a side, opposite to 
30 . Then the hypotenuse c = 2a. Another side b which is opposite to 

60 , can be calculated by the Pythagorean Theorem:  

( )
22 2 2 2 2 22 4 3 3b c a a a a a a a= − = − = − = = . 

Solving this equation for a, we get 

𝑎 =
𝑏

ξ3
=
𝑏ξ3

3
. 

We can draw the following pictures 

 

 

 
 

 

 

Using these pictures, you can solve problems like 14.2 faster. 

  

𝑐ξ3

2
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In any 
 4545 −  triangle both legs are equal. 

o o −   Triangle 

 

The triangle looks like this 

 

 

 

 

 

 

 

Both sides a and b are sides of the square above, therefore, they are equal: a = b. Try to 

remember this fact:  

 

 

 

Example 14.3. Consider 
 4545 −  triangle with legs a, b and hypotenuse c (see picture 

above). Solve the following problems. 

1) a = 5. Find b and c. 

2) b = 7. Find a and c. 

3) c = 10. Find a and b. 

 

Solution. In all problems, a and b are two legs, so they are equal: a = b. Therefore, 

problems 1) and 2) actually the same (just numbers are different). 

1) a = b = 5. By the Pythagorean Theorem 

     
2 2 25 25 50 25 2 5 2c a b= + = + = =  = . 

2) a = b = 7,    
2 2 2 2 27 7 7 2 7 2c a b= + = + =  = . 

3) By the Pythagorean Theorem and using that a = b, 

     
2 2 2 2 2 2 2 2, , 2 100, 50, 50 25 2 5 2a b c a a c a a a b+ = + = = = = = =  = . 

Similar to 
 6030 −  triangle, let’s describe the connection between sides of 

 4545 −  

triangle in general form. As we mentioned above, legs a and b are equal: a = b. The 

hypotenuse c can be calculated by the Pythagorean Theorem: 

2 2 2 2 22 2c a b a a a a= + = + = = . 

Solving this equation for a, we get 

𝑎 =
𝑐

ξ2
=
𝑐ξ2

2
. 

a 

b 

c 
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We can draw the following pictures 

 

 

 

 

 

 

 

 

 

 

a 

a 

 

 

 

𝑐ξ2

2
 

𝑐ξ2

2
 

c 
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Exercises 14 
 

In exercises 14.1 and 14.2, determine all the coterminal angles for angle  . Also, indicate 

two positive and two negative particular coterminal angles (answers may vary). 

 

14.1. 

a) 50 = . 

b) 70 = − . 

 14.2. 

a) 27 = . 

b) 35 = − . 

 

In exercises 14.3 and 14.4, 30 60−  triangle is given. In it, A, B and C are angles, and a, b, 

and c are sides, which are opposite to corresponding angles. 30A = , 90C = . Solve the 

given problems. 

 

14.3. 

a) a = 6. Find b and c. 

b) b = 3. Find a and c. 

c) c = 8. Find a and b. 

 14.4. 

a) a = 8. Find b and c. 

b) b = 9. Find a and c. 

c) c = 4. Find a and b. 

 

In exercises 14.5 and 14.6, 45 45−  triangle is given. In it, A, B and C are angles, and a, b, 

and c are sides, which are opposite to corresponding angles. 45A = , 90C = . Solve the 

given problems. 

 

14.5. 

a) a = 4. Find b and c. 

b) b = 8. Find a and c. 

c) c = 9. Find a and b. 

 14.6. 

a) a = 3. Find b and c. 

b) b = 6. Find a and c. 

c) c = 7. Find a and b. 

   

 

 

Challenge Problem 
 

14.7. A triangle (not necessary a right one) with integer sides, has a length of one side equal 

         to 5, and the other – equal to 1. What is the length of the third side?  
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Trigonometric Functions for Acute Angles 
 

Definition of six trigonometric functions 

 
Consider the following “giraffe” problem: 

“A giraffe’s shadow is 8 meters. How tall is the giraffe if the sun is 28  to the horizon?” 

Trigonometric functions that we introduce here, allow us to solve this and many more 

problems that involve angles and sides of triangles. We will solve the above problem in the 

example 15.1 below. 

To approach such problems, let’s start with definition of trigonometric functions for acute 

angles. 

Consider an acute angle  : 

 

 

 

 

 

Trigonometric functions (in short trig functions) take this angle as its argument (as input) 

and assign some numerical values to it (output values). You will see shortly what exactly 

these values are. 

Because angle    is acute, we can always construct a right triangle with this angle: 

 

 

 

 

 

 

By proportionality properties of similar triangles, the ratios of the sides of this triangle do 

not depend on the size of the triangle; instead, they depend only on the value of the angle 

 .  In other words, if we take two right triangles with the same angle  , but different sizes, 

then the ratios of the corresponding sides remain the same, since the triangles are similar. 

Trigonometric functions are exactly these ratios. 

It is easy to see that there are only six possible ratios of the sides in a triangle. Here are all 

of them: a/c, b/c, a/b, b/a, c/b, c/a. So, there are exactly six trigonometric functions. Each 

of them has its own name and notation. The following table defines all six trig functions 

for angle  . 

  

 

c 

b 

a 

127



 

Session 15: Trigonometric Functions for Acute Angles 

 

 

Hypotenuse 

Adjacent 

O
p
p
o
si

te
 

Function Name Function Notation Definition 

  sine sin  c

a

 

  cosine  cos  c

b

 

  tangent tan  b

a

 

  cotangent cot  a

b

 

  secant sec  b

c

 

  cosecant csc  a

c

 
 

It may seem difficult to memorize all these functions. A simple advice (but perhaps not so 

easy to follow) is just to memorize them as you would the multiplication table. 

From the above six trig functions, the first three are the most frequently used: sine, cosine, 

and tangent. They are called basic trig functions. The other three are reciprocals to basics: 

cotangent is the reciprocal to tangent, secant is the reciprocal to cosine, and cosecant is 

reciprocal to sine: 

1 1 1
cot , sec , csc .

tan cos sin
  

  
= = =  

A possible way to memorize that secant is the reciprocal to cosine, and cosecant is the 

reciprocal to sine is to remember the connection of the first letters in these words: letter c 

is related to letter s: 𝑐 ⇔ 𝑠. Some people like the following mnemonic device SohCahToa 

for remembering the definition of the basic trig functions. It works like this. In the above 

right triangle, we can treat legs a and b as opposite and adjacent to the angle  : 

 

 

 

 

 

 
 
Now, the definition of sine, cosine, and tangent can be reformulated as 

 

     ypotenuseOpposite/Hsin =  

    ypotenuseAdjacent/Hcos =  

    djacentOpposite/Atan =  

 

The first three letters of the word SohCahToa mean: Sine is the ratio of Opposite leg to 

Hypotenuse, so we get Soh, and so on. 

128



 

Session 15: Trigonometric Functions for Acute Angles 

 

Trig Functions for Special Angles 
 

In the previous session we have introduced three special angles 
30 , 

45  and 
60  as angles 

in special right triangles 
 6030 −  and 

 4545 − . Here we calculate the basic trig 

functions sine, cosine and tangent for these angles. 

Because trig functions do not depend on the size of a triangle, for calculations, we can 

choose any value for one of the sides. Let’s select the value of 1 for the shortest leg of 
 6030 −  triangle and for both legs of 

 4545 −  triangle. Recall that in 
 6030 −  triangle, 

hypotenuse is twice as the shortest leg (this leg is opposite to 
30  angle), so the hypotenuse 

is 2. Then by Pythagorean Theorem the other leg is 
2 22 1 3− = . For 

 4545 −  triangle, 

hypotenuse is 
2 21 1 2+ = . We can draw the following two pictures 

 

 

 

 

 
 
 

Now we use the definition of basic trig functions. 

30  angle: opposite side is 1, adjacent side is 3 , and hypotenuse is 2. Therefore, 

1 3 1 3
sin30 , cos30 , tan 30 .

2 2 33
= = = =  

60  angle: opposite side is 3 , adjacent side is 1, and hypotenuse is 2. Therefore, 

3 1
sin 60 , cos60 , tan 60 3.

2 2
= = =  

45  angle: opposite side is 1, adjacent side is 1, and hypotenuse is 2 . Therefore, 

1 2 1 2
sin 45 , cos 45 , tan 45 1.

2 22 2
= = = = =  

 
We summarize these results in the following table 

 

Angle   30  
45  

60  

sin  
2

1
 

2

2
 

2

3
 

cos  
2

3
 

2

2
 

2

1
 

tan  
3

3
 1 3  

1 

 

 

 

2 

 1 

1 
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To restore the values of sin  for the above special values and even for 0 =  and 90 =  
(we will define these values in the next session), the following expression can be used: 

2

n
. Just put  n = 0, 1, 2, 3, and 4 according to the table  

n 0 1 2 3 4 

Angle   0  
30  

45  
60  90  

sin
2

n
 =  

0
0

2
=  

1 1

2 2
=  

2

2
 

2

3
 

4
1

2
=  

 

 

Working with arbitrary acute angles 
 

The practical application of trigonometry is essentially based on the following general 

principal: it is easier to measure angles than distances. To measure angles, there is an 

optical device which is called the clinometer. Schematically, it looks like this: 

 

 

 

 

 

 

 

 

The angle from the horizontal line going up is called the angle of elevation. In the picture 

above,   is the angle of elevation that can be measured by clinometer. In similar way, the 

angle from the horizontal line going down is called the angle of depression: 

 

 

 

 

 

To find the values of basic trig functions for arbitrary angles, we can use buttons sin, cos 

and tan on scientific or graphing calculator. 

Example 15.1. Let’s solve the “giraffe” problem, stated at the beginning of this session. 

We can draw corresponding picture like this 

 

  

  

  

angle of elevation angle of depression 
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For the 28  angle, giraffe is the opposite side, and the giraffe’s shadow is the adjacent side. 

A suitable trig function is tangent (ratio of the opposite side to adjacent). Let’s denote 

giraffe’s shadow by s and giraffe’s height by g. We have tan 28
g

s
= . From here, 

   tan 28 8 0.5317 4.25g s= =  =  m. 

 

Example 15.2. Nick launched a kite on a 120-m thread. The angle of elevation of the thread 

is 37 . At what altitude is the kite flying? 

Solution. Here is the corresponding picture 

 

 

 

 

 

Let’s denote the length of the thread by t. This is the hypotenuse and  t = 120. The problem 

is to find height h which is opposite to the 37 angle. A suitable trig function is sine (ratio 

of the opposite side to hypotenuse). We have sin 37
h

t
= . From here, 

    sin 37 120 0.6018 72.22h t= =  =  m. 

 

Example 15.3. A ladder is leaning against the wall such that the angle of depression of the 

top of the ladder is 56 . What is the length of the ladder if the distance from its lower end 

to the wall is 2 m? 

 

 

 

 

 

 

Solution. We draw two dotted line segments: one horizontal and one vertical. They have 

the same lengths as those to which they are parallel, in particular, horizontal line segment 

is 2 m. In the right triangle formed by the ladder and dotted lines, the ladder is the 

hypotenuse, and the top (horizontal) dotted line is the side adjacent to 56  angle. Let’s 

37  

t  
h 

 

wall 

2 m 

ladder 

28  

Shadow = 8 m 
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denote the length of this side by d and the ladder’s length by l. We have d = 2 m. The 

problem is to find l. A suitable trig function is cosine (ratio of the adjacent side to 

hypotenuse). We have cos56
d

l
= . From here, 

                 
2

3.58
cos56 0.559

d
l = = =  m.  

 

Trig functions allow also to find angles in right triangles when info about sides is known. 

To solve such problems, first identify, similar to previous examples, which trig function 

relates to given problem and find the value of this function. Then, to find the angle you can 

use buttons 
1 1sin , cos− −

 and 
1tan−
 on calculator. These buttons calculate the values of so-

called inverse trigonometric functions. These functions restore angles from the values of 

corresponding trig functions. 
 

Example 15.4. A ship is 160 m away from the center of a horizontal barrier that measures 

200 m from end to end. What is the minimum angle that the ship must be turned to avoid 

hitting the barrier? 

 

 

 

 

Solution. The problem is to find angle  . Let’s denote half of the length of barrier as a. 

We have a = 200/2 = 100 m. This is the side of right triangle on the picture and it is opposite 

to angle  . Another side is the distance from the ship to the barrier. This side is adjacent 

to angle  . We denote it as d. It is given that d = 160 m. Appropriate trig function here is 

tangent (ratio of the opposite side to adjacent). 
 

  ( )1100
tan 0.625 tan 0.625 32

160

a

d
  −= = =  = = . 

Example 15.5.  An airplane is flying at an altitude of 2.5 miles and is preparing for landing. 

It is 8.6 miles from the runway. Find the angle of depression that the airplane must make 

to land safely. 

 

 

 

 

 

Solution. The problem is to find the angle  . We denote the path (distance) of the airplane 

to the runway as d, and altitude as h. It is given that d = 8.6 mi and h = 2.5 mi. In the drawn 

right triangle (with dotted lines), d is hypotenuse, and h is opposite side for angle  . 

Appropriate trig function here is sine (ratio of the opposite side to hypotenuse). 

runway 

  

2.5 mi 8.6 mi 

B
ar

ri
er

 

2
0
0
 m

 

160 m 
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( )12.5
sin 0.29 sin 0.29 17

8.6

h

d
  −= = =  = = . 

Example 15.6. Lillian wants to shingle her roof. The roofer asked her for the angle of 

elevation of the roof to make sure he can climb the roof safely. Help Lillian to calculate 

the angle according to the following picture: 

 

 

 

 

 

 

 

Solution. The problem is to find angle  . Let’s denote the marked horizontal line segment 

(half of the width of the house) as a, and slant line segment (the width of the roof) as s. We 

have a =26/2 = 13 ft and s = 14.5 ft. In the triangle on the right side of the picture, s is 

hypotenuse and a is the side adjacent to angle  . Appropriate trig function here is cosine 

(ratio of the adjacent side to the hypotenuse). 

( )113
cos 0.9 cos 0.9 26

14.5

a

s
  −= = =  = = . 

It looks like it is safe for the roofer to climb the roof. 

 

a 

14.5 ft 

26 ft 
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27 
32o 

47 

53o A 

A 

B 

B 

C 

C 

A 

A 

A 

A 

B 

B 

B B 

C 

45 
23o 

C 
C 

C 

54 

36o 

63o 18 

42o 

23  

Exercises 15 
 

In problems 15.1 and 15.2, find sine, cosine and tangent of angles A and B. 

 

15.1.      15.2 

 

 

 

 

    

15.3. Given a right triangle with an acute angle 𝜃, such that 

a)  sin 𝜃 =
5

13
,         𝑏) cos 𝜃 =

6

7
,        𝑐) tan 𝜃 =

5

4
. 

Calculate other five trig functions. 

 

15.4. Given a right triangle with an acute angle 𝜃, such that 

a)  sin 𝜃 =
3

5
,         𝑏) cos 𝜃 =

5

6
,        𝑐) tan 𝜃 =

3

2
. 

Calculate other five trig functions. 

 

By solving a triangle, we mean to find its main elements: three sides and three angles, 

knowing some of them. 

 

In problems 15.5 – 15.14, solve the given triangle. 

 

                    

15.5.               15.6. 

 

 

 

 

 

15.7.               15.8. 

 

 

 

 

 

 

15.9.               15.10. 

  

 

  

5 

4 

3 

A 

B 

5 
A 

B 

13 

12 
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5  

8  

4 

9  

A 

A B 

B C 

A A B 

B C C 

9 

7 

11 

6 

C 

 

 

15.11.                15.12. 

 

 

 

 

15.13.               15.14. 

 

 

 

15.15.  Find the exact values of secant and cosecant of angles 
30 , 

45  and 
60 . 

 

15.16.  Find the exact value of cotangent of angles 
30 , 

45  and 
60 . 

 

In problems 15.17 and 15.18, determine which angle is the angle of elevation: A or B. 

 

15.17.       15.18. 

 

 

 

 

In problems 15.19 and 15.20, determine which angle is the angle of depression: A or B. 

 

15.19.         15.20. 

 

 

In the problems below, round answers to the nearest tenth. 

15.21. The angle of depression from the top of an apartment building to the base of a 

fountain in a nearby park is 70 . If the building is 80 ft tall, how far away is the 

fountain from the building? 

15.22. Allison is looking at the top of a tall building. Her eyes are 5 feet above the ground. 

The angle of elevation is 75  and she is 15 feet from the building. How tall is the 

building? 

15.23. A 20 foot ladder rests against a wall. Its angle of elevation from the ground is 55 . 

How far from the wall is the base of the ladder? 

15.24. Nick needs to reach a top window of the house using a ladder. He wants to put a 

ladder 1.5 meters from the wall. At this point, he measured that the angle of 

elevation to the window is 53 . How long does the ladder have to be? 

15.25. Ben is flying a kite and realizes that 260 feet of string are out. The angle of elevation 

of the kite is 40 . How high is kite above the ground? 

A 
B A 

B 

A 
B A 

B 
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15.26. Lillian is swimming in the sea and notices a coral reef at the sea bottom. The angle 

of depression is 37  and the depth of the sea here is 50 feet. How far is she from 

the reef? 

15.27. Over 6000 feet (horizontal), a road rises 330 feet (vertical). What is the angle of 

elevation? 

15.28. Suppose a tree 15 m in height casts a shadow of length 27 m. What is the angle of 

elevation from the end of the shadow to the top of the tree? 

15.29. A boat is sailing and spots a big shell 18 feet below the water. A diver jumps from 

the boat and swims 25 feet to reach the shell. What is the angle of depression from 

the boat to the shell? 

15.30. A ladder leans against a wall. The foot of the ladder is 5.4 feet from the wall. The 

ladder is 15 feet long. Find the angle the ladder makes with the wall. 

15.31. A vertical pole stands on the ground and has a support wire that runs from its top to 

the ground. The support is 50 feet long and anchored 22 feet from the base of the 

pole. Find the angle of elevation from the anchor point to the top of the pole. 

15.32. Eli is putting up an antenna at the flat roof of a house. At its top, he attached a 50 ft 

guy wire and anchored it on the roof. Antenna is 30 ft long. What angle does the 

guy wire form with the antenna? 

 

 

Challenge Problems 

15.33. At a river shore (right near the water) a tree is standing. On the opposite side of the 

river, across the tree, Margaret is standing at the distance of 10 m from the water. 

She wants to determine the width of the river. She found that the angle of elevation 

to the top of the tree is 32 . Then Margaret walked right to the water and found that 

the angle of elevation now became 43 . What is the width of the river? 

15.34. Esther and Nick stand at points E and N, 2 m apart in a dark room with a large 

mirror. Esther stands 2 m from the mirror, and Nick stands 1 m. At what angle EBA 

should Esther shine a flashlight on mirror so that the reflected light directly strikes 

Nick? 

 Note. According to the law of reflection, EBA NBC = . 

Mirror 

E 

N 
2 

2 

1 

A B C 
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y 

x 1 0 

x 1 0 
 

A . 
y 
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Unit Circle 
 
In previous session we defined trig functions for acute angles: we constructed right triangle 

with given angle, and defined trig functions as the ratios of the sides in this triangle. This 

approach cannot be used for angles that are not acute like obtuse or negative angles: there 

are no right triangles with such angles. 

Nevertheless, it is possible to define trig functions for arbitrary angles. To do this we will 

use a special tool that allows to reformulate definition of trig function of acute angles in 

such a way that a new definition can be used for arbitrary angles. This tool is called the 

unit circle in the system of coordinates. 

This is just a circle with the radius of 1 and the center at the origin: 

 

 

 

 

 

 

 

 

In this figure we will draw angles in the standard position. It means that their vertices are 

at the origin, and the initial sides goes along the positive part of the x-axis. Here is an 

example of such angle   in the 1st quadrant (i.e. acute angle): 

 

 

 

 

 

 

 

 

Angle   is uniquely defined (up to coterminal angles) by the point A on the circle at which 

terminal side intersects the circle. We will call point A corresponding to the angle  . 

Let (a, b) be coordinates of the point A (we also use the notation A(a, b) for point A): 
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x 
1 0 

 

A . 
B 

y 

 

 

 

 

 

 

 

 

 

 

 

Notice that 0A = 1 (radius of the unit circle). Then by the definition of thig functions in a 

right triangle 0AB, we have 

         b
b

A

AB
===

10
sin , a

a

A

B
===

10

0
cos . 

We see that for acute angles, sine and cosine are the coordinates of the corresponding 

points on the unit circle: sine is the second coordinate (y-coordinate), and cosine is the first 

coordinate (x-coordinate). We’ve got the reformulation (i.e. a new definition) of sine and 

cosine for acute angles: they are the coordinates of points on the unit circle. We can use 

this reformulation as a general definition for arbitrary angles. 

Definition. Let   be an arbitrary angle in the standard position, and A(a, b) be the 

corresponding point on unit circle. Then, by definition, 

sin
sin , cos , tan

cos

b
b a

a


  


= = = = . 

Note. To remember which of the trig functions – sine or cosine – is the first coordinate, 

and which is the second, you may use the alphabetical order of the first letters in the words 

sine and cosine (c is before s, so cosine is the first coordinate, and sine is the second). 

Other three trig functions can be defined as reciprocals to the basics: 

            



tan

1
cot = ,  




cos

1
sec = ,  




sin

1
csc = . 

 

Because sine and cosine are coordinates, trig functions may take both positive and negative 

values depending on the quadrant in which angle   lies. The following figures show the 

signs of basic trig functions. 

 

 

 

 

 

 

 

 

 

 

+ 

Signs of sine 

 –   

+ 

 –   

+ 

Signs of cosine 

 +   

– 

 –   

+ 

Signs of tangent 

 –   

– 

 +   
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90º 

0º 180º 

270º 

360º 

Note. The following phrase may help you to remember which of these functions (sine 

cosine or tangent) is positive in each quadrant: “All Students Take Calculus”. This phrase 

hints that in the first quadrant all three are positive, in the second – only sine, in the third – 

only tangent, and in the fourth – only cosine. 

Example 16.1. Calculate the basic trig functions for the quadrantal angles of 
0 , 

90 , 
180 , 

270 , and 
360 . 

Solution. 

Here is the picture for quadrantal angles: 

 

 

 

 

 

 

 

 
 

1) For 
0  and 

360  angles, the corresponding point on unit circle has coordinates 

(1, 0). Therefore, 

0360sin0sin == 
,  1360cos0cos == 

,  0360tan0tan == 
. 

2) For 
90  angle, the corresponding point has coordinates (0, 1) . Therefore, 

190sin =
, 090cos =

. By definition, 





cos

sin
tan = . Because 090cos =

, 

90tan  is undefined (we cannot divide by zero). 

3) For 
180  angle, the corresponding point has coordinates ( 1, 0)− . Therefore, 

0180sin =
, 1180cos −=

, 0180tan =
. 

4) For 
270  angle, the corresponding point has coordinates (0, 1)− . Therefore, 

1270sin −=
, 0270cos =

, 
270tan  is undefined. 

We summarize the results of example 16.1 in the following table 

 

Angle   0  
90  

180  
270  

360  

sin  0 1 0 –1 0 

cos  1 0 –1 0 1 

tan  0 undefined 0 undefined 0 
 
 
We see that the maximal and minimal values of sine and cosine of the quadrantal angles 

are 1 and  – 1 respectively. For all other angles sine and cosine are between –1 and 1. In 

general, for any angle   

    sin 1, cos 1   . 

There is no restriction for tangent. 
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Reduction Formulas (The “Forehead Rule”) 
 

In example 16.1 we calculated sine, cosine and tangent for quadrantal angles 
0 , 

90 , 
180 , 

270 , and 
360 . Here we describe the way how to simplify sine and cosine of angles 

when we add (or subtract) angle   to (from) quadrantal angles. In other words, we will 

simplify the following expressions: 

( ) ( ) ( ) ( )sin 90 , cos 180 , sin 270 , sin 360       . 

Formulas that simplify these expressions are called reduction formulas. For example, it is 

not difficult to get that ( )sin 90 cos − =  and ( )cos 90 sin − =  (sine of an angle 

and cosine of complement angle are equal). Another example is ( )cos 180 cos + = − . 

It is possible to analyze each of such expressions separately and get all reduction formulas 

(there are 16 of them in total). Instead, we suggest a simple rule to get (and memorize) such 

formulas. We call this rule the Forehead Rule.  

Forehead Rule works like this. To get the reduction formula, assume that the angle   is 

acute. We need to answer two questions: 

1) Should we put a minus sign on the right side of the formula? 

2) Should we change the sine to cosine and/or vice versa? 

To answer the first question, determine the quadrant in which angle under consideration 

lies. Based on the quadrant, determine the sign of trig function (as described above). 

To answer the second question, move your head along the axis on which the quadrantal 

angle lies. In doing this, you automatically get a “yes” or “no” answer. 
 
Example 16.2. Get reduction formulas for  

                                     ( ) ( ) ( )sin 90 , cos 180 , sin 270  + + + . 

Solution.  

For ( )sin 90 + : 

1) Angle 90 +  lies in the 2nd quadrant. Here sine is positive, so minus sign is not needed. 

2) Move your head along vertical axis (where 90  angle is located) and you get the 

answer “yes”, so change sine to cosine. Final answer: ( )sin 90 cos + = . 

For ( )cos 180 + : 

1) Angle 180 +  lies in the 3rd quadrant. Here cosine is negative, so minus sign is needed. 

2) Move your head along horizontal axis (where 180  angle is located) and you get the 

answer “no”, so do not change cosine to sine. Final answer: ( )cos 180 cos + = − . 

For ( )sin 270 + : 

1) Angle 270 +  lies in the 4th quadrant. Here sine is negative, so minus sign is needed. 
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2) Move your head along vertical axis (where 270  angle is located) and you get the 

answer “yes”, so change sine to cosine. Final answer: ( )sin 270 cos + = − . 

Special cases of reduction formulas (when quadrantal angle is 0 ) are 

  ( )sin sin − = −  (odd property of sine) 

  ( )cos cos − =    (even property of cosine) 
 
Reference Angle 
 
This is a useful tool to reduce calculation of trig functions of arbitrary angles to acute 

angles. 

Definition. Let   be an arbitrary angle in standard position. Angle r  is called the 

reference angle to  , if it satisfies three conditions: 

1) Terminal side of r  coincides with the terminal side of  .   

2) Initial side of r  is horizontal (it coincides with either the positive or negative parts 

of the x-axis). 

3) Angle r  is an acute positive angle. 

Let’s see how reference angle r  looks like depending on the quadrant in which original 

angle   is located.  

1) Angle   is located in the first quadrant. Then r  coincides with  : r = . 

2) Angle   is located in the second quadrant. Then 180r = − : 

 

 

 

 

 

 

 
 

3)  Angle   is located in the third quadrant. Then 180r = − : 

 

 

 

 

 

 

 

 

3) Angle   is located in the fourth quadrant. Then 360r = − : 
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A reference angle is useful because, up to a sign, the values of any trig function of   

coincide with the values of the same trig function for the reference angle r , and r  is 

always an acute angle. You can check this using the reduction formulas described above. 

Main Property of Reference Angle 

 

 

 

 
Hence, to calculate the value of a trig function, it is enough to find the sign of the function 

(based on the quadrant) and calculate the value of the trig function of the reference angle. 

Example 16.3. Calculate cos120 . 

Solution. Angle 120  is located in the 2nd quadrant, so cos120 0 . This is the case 2) in 

the pictures above. Reference angle 180 120 60r = − = . We have 
1

cos 60
2

= . 

Therefore, 

     
1

cos120 .
2

= −  

Example 16.4. Calculate sin 225 . 

Solution. Angle 225  is located in the 3rd quadrant, so sin 225 0 . This is the case 3) 

above. Reference angle 225 180 45r = − = . We have sin 45° = 
√2

2
. Therefore, 

2
sin 225 .

2
= −  

Example 16.5. Calculate tan 330 . 

Solution. Angle 330  is located in the 4th quadrant, so tan 330 0 . This is the case 4) 

above. Reference angle 360 330 30r = − = . We have 
3

tan 30
3

= . Therefore, 

The absolute value of any trig function of any angle is equal to 

the value of the same trig function of the reference angle. 
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5 

6 

 

3
tan 330 .

3
= −  

Example 16.6. Find the values of the other five trig functions, if 
5

cos
6

 = −  and  

0tan  . 

Solution. For reference angle r , 
5

cos
6

r = . Let’s draw a right triangle, using the 

definition of  cos r  as the ratio of the adjacent leg to the hypotenuse: 

 

 

 

 

By the Pythagorean theorem, vertical leg of this triangle is 
2 26 5 11− = . From here, 

11
sin

6
r =  and 

11
tan

5
r = . Since cos 0   and 0tan  , angle   lies in the 3rd 

quadrant. Therefore, 
11

sin
6

 = −  and 
11

tan
5

 = . Other three trig functions are: 

   
1 5 5 11 1 6 1 6 6 11

cot , sec , csc
tan 11 cos 5 sin 1111 11

  
  

= = = = = = = − = − . 

It is possible to define a trig function using a circle with an arbitrary radius r (not only a 

unit circle with r = 1). Namely, sine, cosine and tangent of any angle   (in a standard 

position), which has point A(a, b) on its terminal side are:  

 

2 2sin , cos , tan , .
b a b

r a b
r r a

  = = = = +  

 

Note. In the above formulas, the radius r is the distance from the point A(a, b) to the 

origin. 

Example 16.7. Find the value of the six trig functions of the angle   if point (2, 3)−  lies 

on the terminal side of angle  , and   is in the standard position. 

Solution. We have a = 2, b = – 3. Using the above formulas, 

2 2 2 22 ( 3) 13,r a b= + = + − =  

143



 

Session 16: Trigonometric Functions for Arbitrary Angles 

 

3 3 13 2 13 3 3
sin , cos , tan

13 13 2 213

b a b

r r a
  

− −
= = = − = = = = = − . 

Other three trig function are 

1 13 1 13 1 2
csc , sec , cot .

sin 3 cos 2 tan 3
  

  
= = − = = = = −  
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Exercises 16 
 

In exercises 16.1 and 16.2, get the reduction formulas to the given expressions. 

 

16.1. 

     a)   ( )sin 180 +  

     b)   ( )cos 90 −  

 16.2. 

     a)   ( )cos 180 −  

     b)   ( )sin 270 −  

 

In exercises 16.3 and 16.4, find the reference angles to the given angles. 

 

16.3. 

a) 130  

b) 320  

c) 250  

d) 85  

e) 130−  

 16.4. 

a) 200  

b) 10  

c) 310  

d) 100  

e) 210−  

 

In exercises 16.5 and 16.6, reference angle of angle   and the quadrant in which angle   is 

located are given. Find the angle   in the interval from 0  to 360 . 

 

16.5. 

a)  40 , quadrant III 

b) 70 , quadrant II 

c) 50 , quadrant IV 

d) 20 , quadrant I 

 16.6. 

a)  40 , quadrant IV 

b) 70 , quadrant I 

c) 50 , quadrant II 

d) 20 , quadrant III 

 

In exercises 16.7 and 16.8,  

1. Determine the quadrant in which angle is located. 

2. Find the reference angle. 

3. Calculate the exact value without using a calculator. 

   

16.7. 

a) sin 210  

b) cos300  

c) tan135  

 16.8. 

a) sin 315  

b) cos150  

c) tan 240  
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In exercises 16.9 and 16.10, use given information to determine the quadrant in which the angle 

  is located and find the values of the five remaining trig functions. 

 

16.9. 

a) 
2

sin
3

 = −  and tan 0   

b) 
2

cos
5

 = −  and sin 0   

c) 
3

tan
5

 =  and cos 0   

 16.10. 

a) 
4

sin
7

 =  and cos 0   

b) 
5

cos
8

 = −  and tan 0   

c) 
7

tan
4

 = −  and sin 0   

 

In exercises 16.11 and 16.12, coordinates of a point are given. Find the values of six trig 

functions of an angle in the standard position for which the terminal side passes through this 

point. 

 

16.11 

        a)  ( 1, 2)− −  

        b)  (4, 5)−  

        c)  ( 3, 7)−  

 16.12. 

         a)  ( 3, 5)−  

         b)  ( 5, 6)−  

         c)  ( 4, 7)− −  

 

Challenge Problems 

16.13.  Let   be an acute angle. Which is greater: sin 𝜃 or tan  ? 

 

16.14.  Prove that for any acute angle  , 
 

   sin 𝜃 + cos 𝜃 > 1. 
 

16.15. Working at a trig problem, Sophia calculated that sin  =
1

3
 and cos 𝜃 =

2

3
. This 

result is wrong. Why? 

 

16.16.  Prove that if   is not a quadrantal angle, then sin 𝜃 and tan(𝜃/2) have the same 

sign (both positive or both negative). 
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Session 17 
 

Solving Oblique Triangles – Law of Sines 
 
Oblique triangles are triangles that are not necessarily right triangles. We are going to 

“solve” them. It means to find its basic elements – sides and angles, given some of them. 

First of all, let’s see what elements must be given. Obvious, if only angles are given and 

no sides, this info is not enough to determine sides since triangles with the same angles are 

similar and may have different sizes. So, at least one side must be given. We consider all 

possible cases when one, two or all three sides are given as well as some number of angles. 

More precisely, the following four cases are possible in solving triangles: 

1) One side and two angles are given. 

2) Two sides and an angle opposite to one of them are given. 

3) Two sides and the angle between them are given. 

4) Three sides are given. 

Main tools to solve these problems are two important theorems: Law of Sines and Law of 

Cosines. In this session we consider Law of Sines and the first two problems. 

 
Law of Sines 

In any triangle, the bigger side, the bigger opposite angle. However, sides are not 

proportional to the opposite angles. For example, in the right triangle 30 60− , if side 

opposite to 30  is a, then side opposite to 60  is 3a , which is not equal to 2a. Law of 

Sines says that in any triangle sides are proportional to the sines of opposite angles. In other 

words, the ratio of any side to the sine of the opposite angle remains the same for all three 

sides in a given triangle. 

More formally, the following theorem is true. 
 
Theorem (Law of Sines). Consider triangle ABC: 

 

 

 

 

 

 

 

 

Then 

          
C

c

B

b

A

a

sinsinsin
==  

A 

B 

C 

a 

b 

c 
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Proof. For simplicity, we consider only acute triangle (proof for obtuse triangle is slightly 

different, but similar). Let’s draw the height h to the side b: 

 

 

 

 

 

 

 

 

The height h splits the triangle ABC into two right triangles: ABD and BCD. Let’s consider 

the sines of angles A and C:  

In triangle ABD, 
c

h
A =sin . Solve for h: Ach sin= . 

In triangle BCD, 
a

h
C =sin . Solve for h: Cah sin= . 

Equate the above two expressions for h: CaAc sinsin = . Divide both sides of this 

equation by sin sinA C  and get 

  
C

c

A

a

sinsin
= .  

 
Similar ratio is true for the side b and angle B. The proof is completed. 

Law of Sines works perfectly good for solving triangles for the case 1) above when a side 

and two angles of a triangle are given. In this case, the third angle is determined by 

subtracting the two given angles from 180 , and then the Law of Sines is used to find the 

other two sides. 

Example 17.1. Solve a triangle, if a = 14, 
40=B , and 

75=C . 

Solution. We need to find angle A, and sides b and c. 

1) 180 180 40 75 65A B C= − − = − − = . 

2) By the Law of Sines,  
B

b

A

a

sinsin
= . From here, using calculator, we get 

sin 14 sin 40
9.9

sin sin 65

a B
b

A


= = = . 

3) Again, by the Law of Sines, 
C

c

A

a

sinsin
= . From here 

     
sin 14 sin 75

14.9
sin sin 65

a C
c

A


= = = . 

Final answer: 
65=A , b = 9.9, c = 14.9. 

A 

B 

C 

a 

b 

c 

D 

h 
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Using Law of Sines – Ambiguous Case 

Now we consider the case 2) above: to solve a triangle when two sides and an angle 

opposite to one of them are given. In this case a triangle is not always defined uniquely, 

and we may face some difficulties to solve it. This is the ambiguous case. We will assume 

that the following data are given: sides a and b, and angle A opposite to side a (so, b is the 

adjacent side to angle A). 

Case: angle A is obtuse 

This is a simple case, since only two options are possible: the triangle does not exist, or the 

triangle is unique. To understand why, let’s draw angle A and mark side b on its slanted 

side: 

 

 

 

To get a triangle, we need to draw side a from the top point to meet with the horizontal 

side of angle A. Obviously, if side a is too short, it will not meet the horizontal side, and 

the triangle does not exist: 

    

 

 

For a triangle to exist, side a must be greater than b. Then triangle is uniquely defined. 

We come up to the following result. 

Proposition 17.1. Let two sides a and b, and obtuse angle A opposite to side a are given. 

Then 

1) If a b , the triangle does not exist. 

2) If a b , the triangle exists and unique. 

Note. Conclusion in part 1) is also clear by the following reason: if a b , then A B . 

Since angle A is obtuse, then angle B must also be obtuse. But a triangle cannot have two 

obtuse angles. 

Example 17.2. Solve a triangle, if a = 18, b = 14, and 130A = . 

Solution. We need to find angles B and C, and side c. Using the Law of Sines, we have 

B

b

A

a

sinsin
= . From here 

A 
b 

A 
b 

a 
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sin 14 sin130
sin 0.596

18

b A
B

a


= = = . 

Notice, that at this point we calculated sine of angle B, but not angle B itself. To restore 

the angle B from its sine, we can use the button 
1sin−
 on a calculator similar to what we 

did in session 15 for right triangles. This button corresponds to the inverse sine. We have 

1sin (0.596) 37B −= = . 

Now it is easy to find angle C:  180 180 130 37 13C A B= − − = − − = . 

To find side c, we can use Law of Sines again: 

   
sin 18sin13

5.3
sin sin sin sin130

a c a C
c

A C A
=  = = = . 

Final answer: 37 , 13 , 5.3B C c= = = . 

Case: angle A is acute 

Similar to an obtuse angle, let’s draw angle A and mark side b on its slanted side: 

 

 

 

 
 
To create a triangle, we draw side a from the top point. There are four possible cases here: 

1) Side a is too short to meet with the horizontal side: 

 

 

 

 
 
      Triangle does not exist. 

2) Side a touches horizontal side exactly in one point: 

 

 

 

 
      We have a right triangle which is unique. 

3) Side a intersects horizontal side in two points: 

 

 

 

A 

b 

A 

b 
a 

b 

A 
a a 

A 

b a 
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 We have two triangles with sides a, b and angle A. 

4) Side a is long enough, and intersects horizontal side only in one point to create a 

triangle: 

 

 

 

 

     The triangle is unique. The top angle may be acute or obtuse. 

How can we distinguish the above four cases using the values of sides a, b, and angle A? 

Take a look at this picture  

 

 

 

 

 

In your mind, draw side a from the top point. You can see that if a < h, side a is too short 

and the triangle does not exist. If a = h, we can draw only one right triangle. If a is between 

h and b: h < a < b, we can draw side a on both sides (left and right) of height h, and we 

have two triangles. Finally, if a b , we can draw only one triangle. Notice that 

sin
h

A
b
= , so sinh b A= . 

We come up to the following result. 

Proposition 17.2. Let two sides a and b, and an acute angle A opposite to side a are given. 

Also, we denote sinh b A=  (this is the height of the triangle, see the picture above). 

Four cases are possible: 

1) If a < h, then the triangle does not exist. 

2) If a = h, then the triangle is unique. It is a right triangle. 

3) If a b , then triangle is unique. This triangle may be acute, right, or obtuse (related 

to the top angle). 

4) If h < a < b, then there are two triangles. One of them (whose side a is to the left of 

height h) is always obtuse, and the other (whose side a is to the right of height h) 

can be acute, obtuse, or right triangle (see exercise 17.28). 

A practical way to use Proposition 17.2 is to directly apply the Law of Sines 
B

b

A

a

sinsin
=  

and solve this equation for sin B : 
sin

sin
b A

B
a

= . Three cases are possible when 

A 

b a 

A 

b b h 
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calculating sin B by the above formula: 

1) sin 1B  . Because sin B  cannot be greater than 1, triangle does not exist. 

2) sin 1B = . Then 
1sin (1) 90B −= =  .The triangle is unique. It is a right triangle. 

3) sin 1B  . At least one triangle exists with the angle 𝐵1 = sin−1(sin𝐵). To see whether 

the second triangle exists, calculate the supplementary angle 𝐵2 = 180° − 𝐵1. If 

𝐵2 + 𝐴 < 180°, then the second triangle exists with the angle 𝐵2, otherwise, not. 

Example 17.3. Let b = 20 and 30A = . Determine the number of triangles that satisfy the 

given conditions. If the triangle exists, solve it. 

1) a = 5 

2) a = 10 

3) a = 16 

4) a = 25 

Solution. Using the Law of Sines 
B

b

A

a

sinsin
= , we have  

sin
sin

b A
B

a
= . From a 

calculator (or just notice that 30  is a special angle), sin sin 30 0.5A = = , and the 

expression for the sin B becomes 
20 0.5

sin B
a


= , so 

10
sin B

a
= . 

1) If a = 5, then 
10

sin 2
5

B = = . Because sine cannot be greater than 1, triangle does not 

exist. 

2) If a = 10, then 
10

sin 1
10

B = =  and 
1sin (1) 90B −= = . This is a right triangle. To solve 

it, calculate the angle C and side c. 

90 90 30 60C A= − = − = . Side c can be found by the Pythagorean Theorem 

(notice that b is the hypotenuse, and a and c are legs): 

2 2 2 220 10 300 10 3c b a= − = − = = . 

Final answer: 90 , 60 , 10 3B C c= = = . 

3) If a = 16, then 
10

sin 0.625
16

B = =  and 
1sin (0.625) 39B −= = . The other angle B , 

such that sin sinB B =  is an obtuse angle supplementary to angle B: 

180 180 39 141B B = − = − = . We accept it because 

   141 30 171 180B A + = + =  . 

Another reason to accept B  is that b > a (see part 3 in “Case: angle A is acute”). So, 

we have two triangles. Let’s solve them. It remains to find angle C and side c.  
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a) Triangle with angle 39B = . We have 

      180 180 30 39 111C A B= − − = − − = . 

 

    By the Law of Sines, 

sin 16sin111
20.87

sin sin sin sin30

a c a C
c

A C A
=  = = = . 

b) Triangle with angle 141B =  (we use letter B instead of B ). We have 

    180 180 30 141 9C A B= − − = − − = . 

    By the Law of Sines, 

   
sin 16sin9

5.01
sin sin sin sin30

a c a C
c

A C A
=  = = = . 

    Final answer: There are two triangles: 

   39 , 111 , 20.87B C c= = = . 

   141 , 9 , 5.01B C c= = = . 

4) If a = 25, then 
10

sin 0.4
25

B = =  and 
1sin (0.4) 24B −= = . Another angle B , such 

that sin sinB B =  is supplemental to B and is obtuse angle: 

       180 180 24 156B B = − = − = . 

We reject it because 

     156 30 186 180B A + = + =  . 

Another reason to reject B  is that b < a, so angle B  cannot be obtuse (it should be 

less that angle A). So, we have only one triangle with angle 24B = . To solve the 

triangle, it remains to find the angle C and the side c. 

   180 180 30 24 126C A B= − − = − − = . 

By the Law of Sines, 

   
sin 25sin126

40.45
sin sin sin sin30

a c a C
c

A C A
=  = = =    . 

Final answer: 24 , 126 , 40.45B C c= = = . 
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Exercises 17 

Round the answers (where applicable) to the nearest tenth. For a triangle ABC, use the 

following notation: A, B, and C are angles, and a, b, and c are sides opposite to the 

corresponding angles. Similar notations are used for a triangle PQR with angles P, Q and 

R, and sides p, q and r, as well as for a triangle KLM with angles K, L and M, and sides k, 

l and m. 
 
In problems 17.1 and 17. 2, solve a triangle PQR using the given information.   

17.1. 47, 50 ,r P= =  and 110Q = . 17.2. 23, 28 ,p Q= =  and 67R = .    

In problems 17.3 and 17. 4, solve a triangle KLM using the given information. 

17.3. 10, 15,k m= =  and 40M = .  17.4. 35, 20,l m= =  and 70L = . 

17.5. Three friends, Alice, Bob and Carol, are camping in their own tents on a flat meadow 

in the woodland. Alice and Carol are 25 m apart. The angle going from Alice to Bob 

and Carol is 20 , and angle going from Bob to Alice and Carol is 110 . How far 

apart are Bob and Carol? 

17.6.  Back to the previous problem. On the next trip, the three friends set up tents such 

that Alice and Bob are 15 m apart. The angle going from Bob to Alice and Carol is 

70 , and angle going from Carol to Alice and Bob is 40 . How far apart are Alice 

and Carol? 

17.7. On the next trip, the three friends set up tents such that Alice and Carol are 12 m 

apart. The angle going from Alice to Bob and Carol is 50 , and angle going from 

Carol to Alice and Bob is 110 . How far apart are Alice and Bob, and Bob and Carol? 

17.8. A vertical post is standing on the ground and is supported by two wires (one on each 

side going in opposite direction). The ends of the wires on the ground are 7 ft apart. 

The angle of elevation of one of the wires is 80 , and of the other wire is 65 . Find 

the length of each wire. 

17.9. Back to problem 17.5. On the next trip, the three friends set up tents such that Alice 

and Bob are 23 m apart, and Bob and Carol are 18 m apart. The angle going from 

Carol to Alice and Bob 55 . What is the angle going from Alice to Bob and Carol? 

17.10. On the next trip, the three friends set up tents such that Alice and Carol are 15 m 

apart, and Bob and Carol are 24 m apart. The angle going from Alice to Bob and 

Carol is 80 . What is the angle going from Bob to Alice and Carol? 

17.11. On the next trip, the three friends set up tents such that Alice and Bob are 17 m 

apart, and Bob and Carol are 25 m apart. The angle going from Alice to Bob and 

Carol is 50 . What is the angle going from Bob to Alice and Carol? 
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17.12. On the next trip, the three friends set up tents such that Alice and Bob are 18 m 

apart, and Alice and Carol are 13 m apart. The angle going from Carol to Alice and 

Bob is 40 . What is the angle going from Alice to Bob and Carol? 

17.13. On the next trip, the three friends set up tents such that Alice and Carol are 12 m 

apart, and Alice and Bob are 19 m apart. The angle going from Carol to Alice and 

Bob is 110 . How far apart are Bob and Carol? 

17.14. On another trip, the three friends set up tents such that Alice and Carol are 19 m 

apart, and Bob and Carol are 25 m apart. The angle going from Alice to Bob and 

Carol is 50 . How far apart are Alice and Bob? 

17.15. Nina intends to purchase a parcel of land in the shape of a triangle (say, ABC with 

sides a, b, and c). She hired an assessor to measure the parcel. Nina told the assessor 

that it would be enough to provide her with minimum information such that she could 

calculate the remaining measurements (angles and sides) herself. The assessor 

submitted the following report: a = 370 ft, 91A = , b = 400 ft. Recently Nina took a 

course of Trigonometry, and she decided to fire this assessor. Why? 

17.16. Nina hired another assessor. This assessor submitted the following report:  

  a = 370 ft, 71 , 115A B= = . Nina decided to fire this assessor as well. Why? 

17.17. Nina then hired a third assessor. This assessor submitted the following report: 

 a = 370 ft, 71 , 65 , 40A B C= = = . Nina again decided to fire this assessor. 

 Why? 

17.18. Nina hired another assessor. This assessor submitted the following report:  

    a = 370 ft, 71A = , b = 500 ft, 42C = . Nina again decided to fire this assessor. 

    Why? 

17.19. Nina hired yet another assessor. This assessor submitted the following report: 

   a = 370 ft, b = 500 ft, c = 120 ft. Nina decided to fire this assessor too. Why? 

 

 

Challenge Problems 
 

17.20. Nina hired another assessor. This assessor submitted the following report: 

 a = 370 ft, 71A = , b = 400 ft. Nina decided to fire this assessor. Why? 

17.21. Nina hired another assessor. This assessor submitted the following report: 

 a = 370 ft, 71A = , b = 350 ft, 54C = . Nina decided to fire this assessor. Why? 

17.22. Nina hired another assessor. This assessor submitted the following report: 

a = 370 ft, 61A = , b = 400 ft. This time Nina decided not to fire the assessor but 
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to request additional information to be able to calculate remaining angles and sides. 

What additional info (non-numeric) is needed? 

17.23. Two radar stations are located 15 miles apart. They detect an aircraft between them. 

The angle of elevation measured by the first station is 20 , and the angle of 

elevation measured by the second station is 40 . Find the altitude of the aircraft. 

17.24. Back to the previous problem, solve it in general form. Let d be the distance between 

radar stations, and let A and B be the angles of elevations to the aircraft from the 

stations. As before, the aircraft is between radar stations. Find the formula that 

expresses altitude of the aircraft in terms of A, B and d. In this case, it is possible to 

input this formula into a computer program to calculate the altitude instantly and 

track it during the aircraft flight between radar stations. 

17.25. Back to problem 17.23. This time radar stations detect an aircraft on the right side 

of both stations. The distance between stations is 15 miles, and the angles of 

elevations to the aircraft are 20  and 70 . Find the altitude of the aircraft. 

17.26. Back to the previous problem, solve it in general form. Let d be the distance between 

the radar stations, and let A and B be the angles of elevations to the aircraft. As 

before, the aircraft is on the same side (left or right) of both radar stations. Find the 

formula that expresses altitude of the aircraft in terms of A, B and d. 

17.27. A 2.5 m flagpole is NOT standing up straight on the ground. It is supported by two 

wires (one on each side going in opposite direction), each 3 m long. Both wires 

make a 55  angle with the ground. How far apart is each wire from the flagpole (on 

the ground)? 

17.28. Let two sides a and b, and an acute angle A opposite to side a in a triangle ABC are 

given. Denote sinh b A= . Assume that h < a < b. As we showed in Proposition 

17.2, part 4, there are two triangles with the given sides a, b, and angle A. One of 

them, whose side a is to the left of height h, is always obtuse (see the picture located 

above the proposition 17.2). Prove the following statements about the second 

triangle whose side a is to the right of the height h: 

 a)  Let angle 𝐴 < 45°. Then 

  1) If 𝑎 < 𝑏 tan𝐴, the triangle is acute. 

2) if 𝑎 = 𝑏 tan𝐴, the triangle is right. 

 3)  If 𝑎 > 𝑏 tan𝐴, the triangle is obtuse. 

 b)  Let angle 𝐴 ≥ 45°, then the triangle is acute. 

 

156



 

Session 18: Solving Oblique Triangles – Law of Cosines 

 

Session 18 
 

Solving Oblique Triangles – Law of Cosines 

In previous session, using the Law of Sines, we considered two problems on solving 

triangles from the total of four: when one side and two angles are given, and when two 

sides and an angle opposite to one of the sides are given. 

Here we consider the remaining two problems: 

1) Two sides and the angle between them are given. 

2) Three sides are given. 

For both problems, a triangle is unique and, therefore, we do not have an ambiguous case. 

Method to solve these problems is based on another important law in trigonometry: the 

Law of Cosines.  

Note. Formally speaking, in problem 2) a triangle does not exist, if one of the sides is 

greater than or equal to the sum of the other two sides. We will assume that this case will 

not happen. 

Law of Cosines 
 
This law can be treated as generalization of the Pythagorean Theorem from right triangles 

to oblique ones. 

Consider the triangle 

 

 

 

 

 

 
 
 

If C is not a right angle, we cannot conclude that 
2 2 2c a b= + , so the Pythagorean Theorem 

is not true here. Instead, the following result is valid. 
 
Theorem (Law of Cosines). For any triangle, 

        Cabbac cos2222 −+=  

Note. Consider the special case when 
90=C  (case of a right triangle). Then 

090coscos == C  and the above formula becomes 
222 bac +=  which is exactly the 

Pythagorean Theorem. Therefore, the Law of Cosines can be considered as a generalization 

of the Pythagorean Theorem to oblique triangles. 
 
Proof of the Law of Cosines. 

Similar to the proof of the Law of Sines, we consider only case of acute triangles. Let’s 

draw the height h to the side b: 

A 

B 

C 

a 

b 

c 
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Height h breaks the triangle ABC into two right triangles: ABD and BCD. Let’s write down 

the Pythagorean Theorem for each of them: 

For the triangle ABD: 𝑐2 = 𝐴𝐷2 + ℎ
2
. Notice that 𝐴𝐷 = 𝑏 − 𝐷𝐶. Therefore, 

𝑐2 = (𝑏 − 𝐷𝐶)2 + ℎ
2 = 𝑏2 − 2𝑏𝐷𝐶 + 𝐷𝐶2 + ℎ

2
. 

For the triangle BCD: 𝑎2 = 𝐷𝐶2 + ℎ
2
. 

Subtract the second equation from the first: 

𝑐2 − 𝑎2 = 𝑏2 − 2𝑏𝐷𝐶 + 𝐷𝐶2 + ℎ
2 − 𝐷𝐶2 − ℎ

2 = 𝑏2 − 2𝑏𝐷𝐶. 

Solving for 𝑐2, we get 

                                                  𝑐2 = 𝑎2 + 𝑏2 − 2𝑏𝐷𝐶. 

Now write down the definition of Ccos  from the triangle BCD: 
a

DC
C =cos . From here 

CaDC cos= . Substitute this expression into the above formula for 
2c : 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠 𝐶. 

The theorem is proved. 

Note. In this theorem, we have expressed side c through sides a, b and the angle C that is 

between them. Since all three sides play the same role, no one has any privileges over the 

others. Therefore, we can write similar expressions for the sides a and b: 
 

Abccba cos2222 −+=  and  Baccab cos2222 −+=  

 
The Law of Cosines allows us to express cosine of any angle through three sides. To do 

this, just solve the above equations for cosines: 

 

bc

acb
A

2
cos

222 −+
= ,  

ac

bca
B

2
cos

222 −+
= ,  

ab

cba
C

2
cos

222 −+
=  

 

As we mentioned, using the Law of Cosines we can solve triangles for the cases 1) and 2) 

indicated above. We will also use the property 
180=++ CBA . 

Case 1.  Two sides and the angle between them are given. 

Example 18.1. Solve a triangle, if a = 50, b = 15, and 55C = . Round the answers to the 

nearest tenth. 

A 

B 

C 

a 

b 

c 

D 

h 

158



 

Session 18: Solving Oblique Triangles – Law of Cosines 

 

Solution. We need to find side c, and angles A and B. 

1) By the Law of Cosines 

       
2 2 2 2 22 cos 50 15 2 50 15 cos55c a b ab C= + − = + −    . 

            Using a calculator, cos55 0.5736=  and 

 
2 2500 225 1500 0.5736 1864.6c = + −  = . 

             1864.6 43.2c = = . 

        2) cos 𝐴 =
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
=

152 + 1864.6 − 502

2 ∙ 15 ∙ 43.2
= −0.3167. 

 Using a calculator, ( )1cos 0.3167 108.5A −= − = . 

       3) 180 180 108.5 55 16.5B A C= − − = − − = . 

Final answer: c = 43.2, 108.5A = , 16.5B = . 
 
Note. In solving problems for Case 1, it is possible in step 2) to use the Law of Sines instead 

of the Law of Cosines. However, you need to be very careful when using button 
1sin−
 on 

calculator. By pressing this button, you will always get only an acute angle, but the actual 

angle may be obtuse. To avoid possible mistake, we recommend that when using the Law 

of Sines to calculate an angle, do not start from the angle opposite the biggest side, because 

this angle may be obtuse. Always start from another angle that is definitely acute. 

See, what may happen if you do not follow this advice. Let’s return to Example 18.1, and 

try using the Law of Sines in step 2) to find the angle A, which is opposite to the largest 

side a = 50: 

We have 
sin sin

a c

A C
= . From here 

        
sin 50sin55 50 0.8192

sin 0.9481
43.2 43.2

a C
A

c


= = = = , 

 and, using a calculator,  ( )1sin 0.9481 71.5− = . 

So, it looks like 71.5A = . However, this answer is wrong. You can check it by calculating 

the angle 180 180 71.5 55 53.5B A C= − − = − − = and using the Law of Sines: 

 
50

52.7
sin sin 71.5

a

A
= = ,  but  

15
18.7

sin sin 53.5

b

B
= = .  

The correct answer is the supplemental obtuse angle 108.5 180 71.5= − . 
 

When using the Law of Cosines, you do not always start with 
2c . Start by solving for an 

unknown side for which the opposite angle is given. The following example demonstrates 

it. 
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Example 18.2. Solve a triangle, if b = 12, c = 15, and 25A = . Round the answers to the 

nearest tenth. 

Solution. We need to find a, B and C. 

1) Because angle A is given, we start by solving for its opposite side a: 

   
2 2 2 2 22 cos 12 15 2 12 15 cos 25a b c bc A= + − = + −    . 

   Using the calculator, cos 25 0.9063=  and 
2 144 225 360 0.9063 42.73a = + −  = . 

   a = 42.73 = 6.54. 

2) Let’s find angle B using the Law of Sines. This is safe because its opposite side b is not 

the largest one, therefore, B is an acute angle (see Note above). We have 

   ( )1sin 12sin 25
sin 0.775 sin 0.775 50.8

sin sin 6.54

a b b A
B B

A B a

−=  = = =  = = . 

3) 180 180 25 50.8 104.2C A B= − − = − − = . 

Final answer: 6.5, 50.8 , 104.2a B C= = = . 

 

Case 2. Three sides are given. 

We only need to find three angles. Using the Law of Cosines, we can start with any angle. 

We recommend starting with the angle which is opposite to the biggest side. In doing this, 

we guarantee that the other two angles are acute, and to find them we can use either the 

Law of Cosines again or the Law of Sines (without making mistake mentioned in the Note 

above). 

Here are our general recommendations: 

1) When using the Law of Sines, start with the angle which 

 is opposite to the smallest side. 

2) When using the Law of Cosines, start with the angle which  

is opposite to the biggest side. 

Example 18.3. Solve a triangle, if a = 12, b = 20, c = 17. Round the answers to the nearest 

tenth. 

Solution. We need to find angles A, B and C. 

1) According to the above recommendation, we use the Law of Cosines starting with the 

angle B which is opposite to the largest side b = 20. 

Baccab cos2222 −+= . 

To find angle B, you can directly substitute given sides into this formula, or use the 

formula for cos B , indicated right after the proof of the Law of Cosines. We will use 

this formula: 
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          ( )
2 2 2 2 2 2

112 17 20
cos 0.081, cos 0.081 85.4

2 2 12 17

a c b
B B

ac

−+ − + −
= = = = =

 
. 

2) To find angle A, let’s use the Law of Sines  

( )1sin 12sin85.4
, sin 0.598, sin 0.598 36.7

sin sin 20

a b a B
A A

A B b

−= = = = = = . 

3) 180 180 36.7 85 57.9C A B= − − = − − = . 

Final answer: 36.7 , 85.4 , 57.9A B C= = = . 

Example 18.4. Justify the following method to check whether a triangle with given sides 

a, b, and c is an acute, an obtuse or a right triangle: 

Let c be the biggest side of the triangle. Calculate the value 
222 cbaE −+= . 

1) If E > 0, then the triangle is acute. 

2) If E < 0, then the triangle is obtuse. 

3) If E = 0, then the triangle is right. 

Solution. Using the Law of Cosines, 
ab

E

ab

cba
C

22
cos

222

=
−+

= . 

1) If E > 0, then 0cos C  and 
90C . Since c is a biggest side, C is a biggest angle. 

Therefore, two other angels are also less than 
90  and the triangle is acute. 

2) If E < 0, then 0cos C  and 
90C . The triangle is obtuse. 

3) If E = 0, then 0cos =C  and 
90=C . The triangle is right. 

A specific example of using this method was given in session 12, example 12.2. 

Note. If three sides of a triangle are given, you can use the result of Example 18.4 to 

check what kind of triangle you have before calculating the angles.
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Exercises 18 

Round answers (where applicable) to the nearest tenth. For a triangle PQR, use the 

following notation: P, Q, and R are angles, and p, q, and r are sides opposite to the 

corresponding angles. Similar notations are used for a triangle KLM with angles K, L and 

M, and sides k, l, and m. 

In problems 18.1 and 18. 2, solve the triangle PQR using the given information.   

18.1. 20, 30,q r= =  and 65P = .  18.2. 35, 70,p r= =  and 130Q = . 

In problems 18.3 and 18. 4, solve the triangle KLM using the given information. 

18.3. 10, 15, 20k l m= = = .  18.4. 12, 8, 5k l m= = = . 

18.5. Eli and Ben came to the forest to pick some wild flowers. They started from the same 

point, and each walked in a straight line at an angle of 40  relative to each other. 

Every minute they call out to each other to avoid being lost. A sound in this forest 

can be heard from up to 60 m away. After 10 minutes, Eli has walked 80 m and Ben 

has walked 70 m. Can they hear each other at that time? 

18.6. Lillian wants to measure the distance between two trees that are on opposite sides of 

a small pond. She started at one of the trees and walked 240 ft in a straight line along 

the pond. Then she turned at 115  toward the second tree and walked another 310 ft 

until she reached the second tree. What is the distance between the trees?  

18.7. Three friends, Alice, Bob and Carol, are camping in their own tents on a flat meadow 

in the woodland. Alice and Carol are 10 m apart, and Alice and Bob are 15 m apart. 

The angle going from Alice to Bob and Carol is 50 . What is the angle going from 

Bob to Alice and Carol? 

18.8. Back to previous problem. On the next trip, the three friends set up tents such that 

Alice and Bob are 15 m apart, Bob and Carol are 20 m apart, and the angle going 

from Bob to Alice and Carol is 110 . Find the angle going from Carol to Alice and 

Bob. 

18.9. A small airplane is 60 miles from the airport and is going down for landing with some 

angle of depression. However, its navigation device malfunctions and incorrectly 

shows the distance to be 65 miles. The dispatcher noticed this mistake and figured 

out that if airplane continues on its current course, it will end up 16 miles from airport. 

By how many degrees should dispatcher adjust the airplane heading? 
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A  

B 320 m  

180 m  

120 m  

680 m  

700 m 

18.10. An aircraft is making a flight to airport A. At some point a pilot receives information 

that due to bad weather, airport A is closed, and he needs to fly to airport B. At that 

moment, the aircraft is 520 mi apart from airport A, and is 650 mi apart from airport 

B. The distance between airports A and B is 570 mi. By what angle should the pilot 

change the course of the aircraft to fly to airport B? 

 

Challenge Problems 

18.11. After hurricane Sandy, a small tree was leaning. To keep it from falling, it was nailed 

by a 7-foot strap into the ground 5 feet from the base of the tree. The strap was 

attached to the tree 4 feet along the tree from the ground. By what angle from the 

vertical position was the tree leaning? 
 
18.12. The architect wants to design a bridge between points A and B on the two banks of 

a triangular pond (see the diagram below). He needs to know the length of the 

bridge. To calculate, he made measurements as shown below. What is the length of 

the bridge AB? 
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Session 19 
 

Radian Measure of Angles 
 
Most people familiar with the degree measure of angles. We already mentioned in session 

14 that if we cut a round pizza pie (theoretically, of course) into 360 slices, the angle in 

one slice is of one degree (and this is a very tiny piece, so almost nothing to eat). But why 

the number 360 is used for the degree measure of angles?  

This number was introduced by astronomers in ancient Babylon (at least 3000 B.C.). No 

one knows for sure why they settled for this number. At those times, it was already known 

that the yearly cycle consists of 365 and 1/4 days, even though astronomers didn’t know 

yet that the earth revolves around the sun. It is reasonable to guess that they just rounded 

365 and 1/4 to 360 because the number 360 has many more divisors. In other words, the 

number 360 can be divided into whole parts much better than 365. From this point of view, 

we could treat one degree angle as one day related to entire year. In any case, it’s clear that 

angle measure based on the number 360 is artificial. It looks similar to the decimal system 

which is also an artificial one since it was introduced only because we have 10 fingers on 

our hands. In math, and especially in computer science, it is used more convenient systems 

like binary or octal which have as bases powers of two. These systems could be considered 

as natural ones. 

And how about measurement of angles? Does some kind of natural measure of angles 

exist? The answer is “yes”. This measure is called the radian measure. 

To define the radian measure, consider an angle as a central angle in a circle. It means that 

we draw a circle and put the vertex of the angle in its center: 

 

 

 

 

 

 

 

 
 
Of course, we can draw infinite many such circles. One of them is a unit circle (its radius 

is equal to 1). Using it, the radian measure (denoted as  ) of the central angle in unit 

circle is the length s of the corresponding arc (arc between two radii): 

 

 

 

 

 

 

Central angle 

s=    

1 

1 
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For any other circle (with arbitrary radius), by the proportionality, the ratio of the arc to the 

radius equals to the above arc of the unit circle. We come up to the following definition for 

arbitrary circle. 

Definition of Radians. Consider an angle as a central angle: we draw a circle with the 

center in its vertex. Let the radius and the corresponding arc of the circle be r and s 

accordingly. Then the radian measure   of the angle is defined as the ratio of s to r: 

 

 

 

 

 

 

 

 

 

From here, s r=  . We may say that the radian measure of a central angle is the number 

of radii that can fit in the corresponding arc; hence the term “radian”. 

In particular, a central angle is of one radian measure, if the length of the corresponding 

arc is equal to the radius: s = r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We may also say that a one-radian angle is an angle in a “curvilinear” equilateral triangle 

(sector) in which two sides are radii, the third side is an arc, and all three sides are equal. 

From this point of view, it is easy to estimate the value of one radian. As we know, in a 

“normal” equilateral triangle all three angles are of 
60 . In “curvilinear” equilateral 

triangle, the central angle should be a bit less than 
60  because the opposite side is an arc 

(a curve). Below in example 19.1 we will calculate that 1 radian 
3.57 . As we see, it is 

much better to cut our pizza pie by radians. In this case at least 6 people (360/57.3 ≈ 6) will 

have something to eat. 

 

At the first glance the radian measure may look a bit more complicated than the degree 

measure. However it is more useful in many problems in mathematics and science.  

r

s
=    

r  
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To understand the benefit of radian measure, let’s re-write the above formula 
r

s
=  as 

rs =  . As you see, using the radian measure, the connection between arc, angle and 

radius is very simple. For any other measure of angles (for example, for degrees) this 

connection is more complicated and has the form rks =  , where k is some numerical 

coefficient (we will show in example 19.4 below that for the degree measure, 017.0k ). 

Radian measure is different from all others by the simplest value 

 k = 1. The main idea of the radian measure is to relate linear (length of the arc) and angular 

measurements in the simplest possible way. That’s why many mathematical and technical 

calculations are simpler when using radians. 

The idea of measuring angles by the length of the arc is credited to Roger Cotes in the early 

1700s, an English mathematician who worked closely with Isaac Newton. But the term 

radian was first introduced only in the late 1800s by James Thomson, Ireland. 

Let’s set up a connection between the radians and degrees. Consider the angle of 
360 . 

This angle corresponds to a full rotation around a circle. If we consider it as a central angle, 

the corresponding arc s is the entire circumference. Recall the formula for the 

circumference of a circle: 2s r=  . Compare this formula with the above rs =  . By 

equating both, we get 2r r  =  . From here,  2= . We see that the angle 360  

corresponds to 2  radians. This connection allows to express any degree measure in 

radians and vice versa. In particular, 
180  corresponds to   radians. For any angle, let’s 

denote its degree measure as 
 , and the radian measure as r . It is easy to set up a 

connection between 
  and r using the proportion: 180  relates to   as 

  relates to r   

 

 

 

 

           

Let’s call this proportion the main proportion. 

By cross-multiplication, we get 180 r   =  . From here we can express 
  through 

r  and vice versa: 

     r


 =


 180
,     




 =
180

r . 

Note. You do not need to memorize these formulas. Just remember that 
180  corresponds 

to   radians: 

    180 rad=  
 

and then use the main proportion. 

 

Example 19.1. Express the angle of 1 radian in degrees. 

180

r



 
=  
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Solution. The main proportion takes the form 

180

1r




=   

By cross-multiplication, 
 180= . From here, 

180 180
57.3

3.14



=   . 

So, 1 radian 57.3 . 

Note. If angle in radians is given in terms of  , there is no need to use proportion to 

convert this angle into degrees: simply replace   with 180. In this way we can say 

immediately that 
2


 is 90 , 

3

2


 is 270 , 2  is 

360  and so on.    

Example 19.2. Express the angle of  
5

12


 radians in degrees. 

Solution. Replace   with 180 and you are done: 
5 5 180

75 .
12 12

 
= =  

 

Example 19.3. Express the angle of 
1  in radians. 

Solution. The main proportion takes the form 

180 1

r 
=  

By cross-multiplication,  = r180 . From here, 
3.14

0.017.
180 180

r


 =    

So, 1 0.017  radians. 

Example 19.4. Express the arc length of a central angle through the radius of the circle and 

the degree measure of the angle. 

Solution. Let s, r, and 
  be the arc length, radius, and degree measure of the central angle 

accordingly. Also, denote by r  the radian measure of the angle. As we mentioned above, 

rs r =  , and 



 =

180
r . From here, rs = 



180
. Using calculation 

0.017
180


 , we can write the approximate formula rs  017.0 . 
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rs r =   

Note. Let’s recall once again that for radian measure, the connection between the arc length 

s, radius r, and the central angle r  is the simplest: 

 

 

For any other measure this relation is more complicated, for example for degrees, 

rs  017.0 . 
 

Using the main proportion, we can calculate the radian measure of special angles 
30 , 

45  

and 
60 , as well as of the quadrantal angles 

0 , 
90  

180  
270  

360 . The following table 

summarizes the calculations. 

 

Degrees 0  
30  

45  
60  

90  
180  

270  
360  

Radians 0 
6


 

4


 

3


 

2


   

2

3
 2  

 

 

In conclusion, let’s mark quadrantal angles in degrees and radians on the unit circle. 

Compare left and right figures. 

 

 

 

 

 

 

 

 

 

 

 

90º 

0º 180º 

–180º 

270º –90º 

360º 2 

0 
– 

–/2 3/2 

 

/2 

Angles in degrees Angles in radians 
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Exercises 19 

In exercises 19.1 and 19.2, convert given angles from radians to degrees. Round the 

answers to the nearest tenth. 
 
19.1.  a)  1.3 

          b)  – 0.6 

 19.2.  a)  2.4 

          b)  – 0.8 
 
In exercises 19.3 and 19.4, convert given angles from radians to degrees. 
 

19.3.  a)  
2

9


 

          b) 
3

10


−  

 
19.4.  a)  

4

15


 

          b) 
6

5


−  

 
In exercises 19.5 and 19.6, convert given angles from degrees to radians. Round the 

answers to the nearest hundreds. 
 
19.5.  a)  140  

          b) 85−  

 19.6.   a)  78  

           b) 237−  

 
In exercises 19.7 and 19.8, convert given angles from degrees to radians. Write the 

answers in terms of  . Do not round the answers. 
 
19.7.  a)  120  

          b) 150−  

 19.8.  a)  330  

          b) 225−  

 
In exercises 19.9 and 19.10, angle   is given in radians. Without using a calculator, 

find the exact values of the sine, cosine, and tangent of the angle  . 
 

19.9.  a)  
4

3


 =  

          b)  
4


 = −  

          c)  
5

6


 =  

 
19.10. a)  

6


 = −  

           b)  
2

3


 =  

           c)  
3

4


 = −  

 
In exercises 19.11 and 19.12, r is the radius of a circle, and   is the central angle. Find 

the length of the arc bounded by angle  . Round your answer to the nearest tenth. 
 
19.11. a)  r = 4.2 ft,  2.3 =  (rad) 

           b)  r = 1.3 cm,  80 =  

 19.12. a)  r = 1.7 m,  0.3 =  (rad) 

           b)  r = 2.5 in,  115 =  
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Challenge Problems 

 
19.13.   The angles of a triangle are in the ratio of 3:4:5. Express these angles in radians. 

19.14.  The diameter of a Ferris wheel is 16 m. The spokes connecting two consecutive 

cabs to the center of the wheel make an angle of 
8


. How many cabs are on the 

wheel? What is the length of the arc between two consecutive cabs? 

19.15.   Nick is running around a circular track of radius 30-meters. Esther is standing at 

the center and observing him. She found that she turned 6 radians in one minute. 

What was the Nick’s speed? 

19.16.  A fly sat on the top of the second hand of a large clock and rode 48 cm until Lillian 

swatted it away. How long was the fly riding if the length of the second hand is 

1.5 m? 

19.17.  In what quadrant does the 100-radian angle lie? 

19.18.  Which value is greater: sin 3 or cos 4? Here 3 and 4 are angles in radians. You may 

use a calculator only for simple arithmetic operations, but not for sine and cosine. 

19.19.  Prove the following statements: 

            a)  Let n be any integer not divisible by 3. Then the reference angle of  
𝑛𝜋

3
  is  

𝜋

3
. 

            b)  Let n be any integer not divisible by 2. Then the reference angle of  
𝑛𝜋

4
  is  

𝜋

4
. 

            c)  Let n be any integer not divisible by 2 and 3. Then the reference angle of  
𝑛𝜋

6
  

    is  
𝜋

6
.   

            d)  Let k be any integer and n = 3, 4, 5, … . Then the reference angle of   
(𝑘𝑛+1)𝜋

𝑛
 

    is  
𝜋

𝑛
. 
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Session 20 
 

Graph and Basic Equation for Sine 

 

In this and the next session, we will consider three basic trig functions: sine, cosine, and 

tangent. For these functions, we construct graphs, and solve the three basic (or simplest) 

equations: sin , cosx a x a= = , and tan x a= , where a is a given constant number. We 

call these equations basic because the solution of many more complicated equations can be 

reduced to them. In this section, we focus on the sine, and in the next, on the cosine and 

tangent. We will use the radian measure. 

Function xy = sin( )  

Let’s recall the definition of the sine for an arbitrary angle: we draw the angle in the 

standard position in the system of coordinates with the unit circle, and consider the point 

of interception of the terminal side of the angle with the unit circle. Sine is the second 

(vertical) coordinate of this point. 

To draw graph of sine, we will move along the unit circle, starting with the rightmost 

position, and observe how the vertical coordinate of the point on the unit circle changes 

from quadrant to quadrant. 

Obviously, in the first quadrant, the vertical coordinate (i.e. sine) increases from zero to 

one: 

 

 

 

 

 

 

 

To graph the sine, we will use a different system of coordinates in which we mark the angle 

on the horizontal axis (we will use the letter x instead of  ), and mark sin x  on the vertical 

y-axis. If you pick up several values of the angles x in the first quadrant (i.e. from 0 to 

/ 2 ), calculate sin x (for instance, for special angles 𝜋 6⁄ , 𝜋 4⁄ , 𝜋 3⁄ ), and plot the points 

in the system of coordinates, you will see that the sine does not increase along a straight 

line. Instead, it increases along the curve: 

 

 

 

 

 

 
 
                                   Graph of sine in the first quadrant 

y 

x 1 0 

• 

 
 = vertical coordinate 

1 

 x 0 

1 
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      Entire graph of the function xy sin=  

In similar way, in the second quadrant (from / 2  to  ), sine decreases from 1 to 0: 

 

  

 

 

 

 
                              

                                    Graph of sine in the first and second quadrants 
 
Continue moving along the unit circle, we see that in the third quadrant (from   to  

3 / 2 ) sine decreases from 0 to –1, and in the fourth quadrant (from 3 / 2  to 2 ) sine 

increases from –1 to 0. At this point, we get the graph of sine for one full cycle (we also 

say, on one period interval): 

  

 

 

 

 

 

 
 

                        Graph of sine on one period interval  0, 2  

 

If we continue to move around the unit circle in either direction (positive or negative), we 

will expand the graph of sine to the entire number line, i.e. for all the values of x from  –  

to + : 

 

 

 

 

 

 

 

 

 

 
 

You can see that the domain of sine (possible values of x) is the interval (– , + ) and the 

range (possible values of y) is [–1, 1]. Sine is a periodic function with a period of 2 . It 

means that the sine “repeats itself” on each interval of the length 2 . More formally, for 

any x 

   sin( 2 ) sin( )x x+ =   (Periodic property of sine) 

Also, the graph is symmetric with respect to the origin. Algebraically, it means that 
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   sin( ) sin( )x x− = −  (Odd property of sine) 

Solving Basic Equation x asin( ) =  on One Period Interval  )0, 2  

Notice that the right point 2  is not included in the interval [0, 2𝜋). The reason is that this 

point corresponds to the angle of 0, which is already taken for the left point of the interval. 

In this interval, equation sin( )x a=  may have zero, one or two solutions depending on the 

value of a. More precisely, the following statements are true. 

Proposition 21.1. Consider the equation  sin( )x a=  in the interval  )0, 2 . Then 

1) If 1a  , the equation does not have solutions. 

2) If 1a = , the equation has one solution. 

3) If 1a  , the equation has two solutions. 

We can check all three statements using a geometric interpretation of the equation 

sin( )x a= : we consider intersections of the horizontal line y = a with the graph of sine. 

Then the x-coordinates of the points of intersections are the solutions. By drawing this 

horizontal line, we can see three different locations of this line, depending on three different 

values of number a. 

1) 1a  . This inequality is equivalent to 1a   or 1a  − . Horizontal line 

y = a is located above or below the graph of sine, so no points of intersection, and no 

solutions. 

2) 1a = . This equality is equivalent to a = 1 or a = –1. In both cases line 

y = a touches the graph of sine at only one point in the interval  )0, 2 : 

 Line y = 1 touches the graph at the point ( )/ 2, 1 . Therefore,  

          the equation sin( ) 1x =  has only one solution / 2x = . 

 Line y = –1 touches the graph at the point ( )3 / 2, 1 − . Therefore,  

         the equation sin( ) 1x = −  has only one solution 3 / 2.x =  

3) 1a  . This inequality is equivalent to 1 1a−   . Line y = a is located between the 

lines y = –1 and y = 1 and intersects the graph of sine at exactly two points in the interval 

 )0, 2 . In particular, if a = 0, equation sin( ) 0x =  has two solutions: 

     0x =  and x = . 

To find the roots of the equation sin( )x a=  when 0a   and 1 1a−   , we can use 

the reference angle. (For review of reference angles, see session 16). 
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Steps to solve the equation sin( ) , 0, 1 1x a a a=  −   . 

1) Set up the equation for the reference angle rx : sin( )rx a= . In other words, ignore 

the sign of the number a (always take a plus sign). Solve this equation for the 

reference angle: ( )1sinrx a−= . To calculate rx , you may use the button 
1sin−
 on 

a calculator. 

2)   Determine the quadrants in which the angle x is located based on the sign of the 

 number a: 

     If a > 0, then angle x is located in the 1st and 2nd quadrants. 

     If a < 0, then angle x is located in the 3rd and 4th quadrants. 

3)  Using quadrants and a reference angle, find two solutions 1x  and 2x  of the equation 

sin( )x a= . 

      If a > 0, then 1 rx x=  and 2 rx x= −  (solutions are in the 1st and 2nd quadrants): 

 

 

 

 

 

 

 

 

If a < 0, then 1 rx x= +  and 2 2 rx x= − (solutions are in the 3rd and 4th 

quadrants): 

 

 

 
 
 

 

 

 

 

 

Example 20.1. Solve the equation 2sin( ) 4 5x + =  in the interval  )0, 2 . 

Solution. We can reduce this equation to the basic one by solving for sin( )x : 

1
2sin( ) 1 sin( )

2
x x=  = .  
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Here a = 1/2 > 0. Therefore, the equation for reference angle rx  is the same as for x: 

sin( ) 1/ 2rx = . From here 
1sin (1/ 2)rx −= . We can find rx  with a calculator or using the 

special value 1/2: 
1sin (1/ 2) 30 / 6rx −= = = . The original equation has two roots. One 

of them, 1x , is located in the 1st quadrant and coincides with the reference angle: 

1 / 6rx x = = . The second root 2x  is in the 2nd quadrant: 

2 / 6 5 / 6rx x   = − = − = . 

Final answer: 
5

,
6 6

  
 
 

. 

 

Example 20.2. Solve the equation 2sin( ) 2x− =  in the interval  )0, 2 . 

Solution. Solving for sin( )x , we get the basic equation sin( ) 2 / 2x = − . Here 

2 / 2 0a = −  . The equation for reference angle rx  is sin( ) 2 / 2rx a= = . From here, 

using a calculator or the special value 
2

2
, we can find that 

1 2
sin 45

2 4
rx

−
 

= = =  
 

. 

The original equation has two roots. One of them, 1x , is located in the 3rd quadrant: 

1

5

4 4
rx x

 
 = + = + = . The second root 2x  is in the 4th quadrant: 

2

7
2 2

4 4
rx x

 
 = − = − = . 

Final answer: 
5 7

,
4 4

  
 
 

. 

Example 20.3. Solve the equation 5sin( ) 1 3x − =  in the interval  )0, 2 . Round the 

answer to the nearest hundredth. 

Solution. Solving for sin( )x , we get the basic equation 
4

sin( )
5

x = . Here 
4

0
5

a =  . The 

equation for reference angle rx  is the same as for x: 
4

sin( )
5

rx = . The value 
4

5
 is not a special 

value, and, to find rx , use a calculator (make sure the calculator is in radian mode): 

1 4
sin 0.93

5
rx −  
= = 

 
 Original equation has two roots. One root 1x  is located in the 1st 

quadrant and coincides with the reference angle: 1 0.93rx x= =  The second root 2x  is in 

the 2nd quadrant: 2 0.93 2.21rx x = − = − = . 

Final answer:  0.93, 2.21 . 
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Example 20.4. Solve the equation 6sin( ) 7 2x + =  in the interval  )0, 2 . Round the 

answer to the nearest hundredth. 

Solution. Solving for sin( )x , we get the basic equation 
5

sin( )
6

x = − . Here 
5

0
6

a = −  . 

The equation for reference angle rx  is 
5 5

sin( )
6 6

rx = − = . The value 
5

6
 is not a special 

value and, to find rx , we use a calculator in the radian mode: 
1 5

sin 0.99
6

rx −  
= = 

 
. The 

original equation has two roots. One of them, 1x , is located in the  3rd quadrant: 

1 0.99 4.13rx x = + = + = . The second root 2x  is in the 4th quadrant: 

2 2 2 0.99 5.29rx x = − = − = . 

Final answer:  4.13, 5.29 . 
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Exercises 20 

In all exercises and problems, solve the given equations in the interval  )0, 2 . Use the 
radian measure. 

In exercises 20.1 – 20.2, do not round the answers. Write the answers in terms of  . 

20.1.  a)  2 2 sin( ) 1 1x − =     20.2.  a)  2 3 sin( ) 1 2x − =  

b) 2 3 sin( ) 4 1x + = b) 2√2 sin(𝑥) + 3 = 1

c) 2 3 sin( ) 3 1x − =  c) 3 2 sin( ) 4 2x − =  

In exercises 20.3 and 20.4, the equations are not linear. However, they can be reduced to 

the linear equations by treating them as quadratic equations with respect to the 

corresponding trig functions. See more non-linear equations in session 22. 

20.3.  a)  2 sin2 𝑥 + sin 𝑥 = 0 20.4.  a)  2 sin2 𝑥 − sin 𝑥 = 0

b) 2 sin2 𝑥 + sin 𝑥 − 1 = 0 b) 2 sin2 𝑥 − sin 𝑥 − 1 = 0

In exercises 20.5 and 20.6, round the answers to the nearest hundredth. 

20.5.  a)  4sin( ) 1 2x − = 20.6.  a)  5sin( ) 2 1x − =  

b) 6sin( ) 5 3x + = b) 7sin( ) 6 2x + =

Challenge Problems 

20.7.  sin3 𝑥 + sin 𝑥 = 2

20.8.  sin4 𝑥 − sin 𝑥 = 2
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y 

x 1 0 

• 

 

 = horizontal coordinate 

1 

Session 21 
 

Graphs and Basic Equations for 

Cosine and Tangent 
 

In the previous session, we examined the graph and the basic equation for the sine function. 

Here we will study these topics for cosine and tangent. Namely, we will construct graphs 

for cosine and tangent, and solve the basic equations cos x a=  and tan x a= . As in the 

previous session, we will use the radian measure. 

Function xy = cos( )  

We can proceed similar to the sine function. We will do this briefly, hoping that the reader 

will be able to restore the details on their own. By definition, cosine is the first (horizontal) 

coordinate of a point on the unit circle that corresponds to given angle  : 

 

  

 

 

 

 

 

 

 

Moving around the unit circle from quadrant to quadrant, we can plot the graph of cosine 

by observing how the horizontal coordinate changes. As in the case of the sine function, 

we use another coordinate system in which we mark the angle on the horizontal axis (we 

will use the letter x instead of  ), and mark cos x  on the vertical 

y-axis. In the first quadrant, when the angle runs from 0 to / 2 , cosine decreases from 1 

to 0: 

 

 

 

 

 

    

                                

                               Graph of the cosine in the first quadrant 

 

In the second quadrant, cosine continues to decrease from 0 to –1, in the third quadrant, it 

increases from –1 to 0, and, finally, in the fourth quadrant, it increases from 0 to 1. Here is 

the graph of the cosine at one full cycle (on one period interval) from 0 to 2 : 

  

178



 

Session 21: Graphs and Basic Equations for Cosine and Tangent 

 

 

 

 

 
 

          

 

 

           Graph of the cosine on one period interval  0, 2  

 

If we extend graph to the entire x-axis, we get the complete graph of the cosine: 

 

 

 

 

 

      

 

     Entire graph of the function cosy x=  

Like for the sine, the domain of the cosine is (– , + ), range is [–1, 1], and the cosine is 

a periodical function with the same period 2 . Graph of the cosine is symmetric about the 

y-axis: 

 cos( ) cos( )x x− =  (Even property of cosine). 

 
Note. It is also possible to get the graph of the cosine by shifting the graph of sine to the 

left by / 2  using the reduction formula cos( ) sin( / 2)x x = + . 

Solving Basic Equation x acos( ) =  on One Period Interval  )0, 2  

The number of solutions of this equation is exactly the same as that of the sine. 

Proposition 21.1. Consider the equation cos( )x a=  on the interval  )0, 2 . Then 

1) If 1a  , the equation does not have solutions. 

2) If 1a = , the equation has one solution in the interval  )0, 2 : 

 For the equation cos( ) 1,x = the only solution is 0x = . 

 For the equation cos( ) 1,x = −  the only solution is .x =  

3) If 1a  , the equation has two roots. In particular, if a = 0, roots of the equation 

cos( ) 0x =  are 1 / 2x =  and 2 3 / 2x = . If 0a  , both roots can be found using 
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the reference angle ( )1cosrx a−=  in the same way as we did for the equation 

sin( )x a= . Also, the following formulas can be used that are true for any values 

of a, such that 1a  : 

                   
1

1 cos ( )x a−=  and 
1

2 2 cos ( )x a −= − . 

Note. We described two methods of solving the equation cos( )x a= : use steps similar to 

those described for the equation sin( )x a= , and the above formulas. 

Example 21.1. Solve the equation 2 3 cos( ) 1 2x − =  in the interval  )0, 2 . 

Solution. First, to get the basic equation, we solve this equation for cos( )x . We have 

3
cos( )

2 3
x =  or 

3
cos( )

2
x = . Using steps similar to equation sin( )x a= , we set up the 

equation for the reference angle rx and solve it: 

                    
3 3

cos( )
2 2

rx = =  ⇒ 
1 3

cos 30
2 6

rx
−

 
= = =  

 
. 

 Since cos( )x  > 0, given equation has two roots which are located in the 1st and 4th 

quadrants: 

      1

1

3
cos 30

2 6
x

−
 

= = =  
 

, and 2

11
2

6 6
x

 
= − = . 

Example 21.2. Solve the equation 2cos( ) 4 3x + =  in the interval  )0, 2 . 

Solution. Solving this equation for cos( )x , we have 
1

cos( )
2

x = − . Using the second 

method indicated in the Note above, we get two solutions: 

      
1

1

1 2
cos 120

2 3
x

−  
= − = = 

 
, and 2

2 4
2

3 3
x

 
= − = . 

Function xy = tan( )  

On the unit circle in the system of coordinates, we can interpret tangent as follows. On the 

right side of the unit circle, draw a vertical line and extend the terminal side of the angle to 

meet with that vertical line. Then the tangent is the vertical coordinate of the point of 

interception. Here are pictures of the tangent when the angle is located in each of the 

quadrants: 
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         Angle is in 1st quadrant                    Angle is in 2nd quadrant 
 
 

 

 

 

 

 

 

 

    Angle is in 3rd quadrant                  Angle is in 4th quadrant 
 
We will draw the graph of the tangent in the same way as we did for the sine and cosine. 

Moving along the unit circle in the first quadrant, note that the tangent increases from zero 

to infinity, and its graph in the 1st quadrant is as follows: 

 

 

 

 

 

 

  
 
     Graph of the tangent in the first quadrant 
 

Line / 2x =  becomes vertical asymptote. Continue moving in 2nd quadrant, we get the 

picture  

 

 

 

 

 

 

 
              
                             

 

                         Graph of the tangent in the first and second quadrants 

1 

 
 

1  

 

 

 

1 

  

1 
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Moving in the 3rd and 4th quadrants, we get graph of tangent on interval  )0, 2 : 

 

 

 

 

 

 

 

 

 

                    Graph of tangent on the interval   0, 2  

 

Continue to move around the unit circle in both directions, we can draw a complete graph 

of the tangent: 

 

 

 

 

 

 

 

 

 

 

 

      Entire graph of the function tany x=  

 

We see that the graph consists of an infinite number of branches and has an infinite number 

of vertical asymptotes. The graph is symmetrical about the origin, so the tangent is an odd 

function: ( ) ( )tan tanx x− = − . It repeats over an interval of length  , so the tangent has a 

period of  : ( ) ( )tan tanx x+ = . 

 

Solving the Basic Equation x atan( ) =  on the Interval  )0, 2  

Any horizontal line y = a intersects the graph of a tangent on  )0, 2  interval always at 

two points (see pictures above), so on this interval the equation ( )tan x a=  always has 

exactly two roots for any a. The roots can be found in the same way as we described in 

session 20 for the equation sin( )x a= , using the reference angle rx  which is a solution of 

the equation ( )tan rx a= : ( )1tanrx a−= . To calculate the reference angle, we can use 
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the button 
1tan−
 on the calculator. 

 

 Proposition 21.2. For any a, the equation ( )tan x a=  has two roots in the interval 

 )0, 2 . 

  If 0a = , the roots are  1 20,x x = = . 

  If 0a  , then using the reference angle ( )1tanrx a−= , we have 

1) If 0a  , the roots are in the 1st and 3rd quadrants and are 

1 2,r rx x x x= = + . 

2) If 0a  , the roots are in the 2nd  and 4th quadrants and are 

          1 2, 2r rx x x x = − = − . 

Note. You do not need to memorize these formulas. Just draw a unit circle and mark the 

corresponding angles, as we did for the equation sin( )x a= . 

 

Example 21.3. Solve the equation ( )3tan 2 3 3x − =  in the interval  )0, 2 . 

Solution. Solving the equation for ( )tan x , we get the basic equation ( )tan 3x = . The 

reference angle rx  is the solution of the equation ( )tan 3 3rx = = : 

1tan ( 3) 60 / 3rx −= = = . 

 Roots of the given equation are located in the 1st and 3rd quadrants and are 

1 / 3rx x = = , 

2 / 3 4 / 3rx x   = + = + = . 

Example 21.4. Solve the equation 4 tan( ) 5 1x + =  in the interval  )0, 2 . 

Solution. Solving the equation for ( )tan x , we obtain the basic equation ( )tan 1x = − . The 

reference angle rx  is the solution of the equation ( )tan 1 1rx = − = : 

( )1tan 1 45 / 4rx −= = = . 

Roots of the given equation are located in the 2nd and 4th quadrants and are 

1 / 4 3 / 4rx x   = − = − = , 

2 2 2 / 4 7 / 4rx x   = − = − = . 
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Exercises 21 

In all exercises, solve the given equations in the interval  )0, 2 . Use a radian measure.

In exercises 21.1 – 21.4, do not round the answers. Write the answers in terms of  . 

21.1.  a)  2 2 cos( ) 3 5x + = 21.2.  a)  2√3cos(𝑥) + 3 = 6 

b) 2 3 cos( ) 5 2x + =           b)  2 cos( ) 4 3x + =  

c) 3 2 cos( ) 7 2x − = c) 2 3 cos( ) 5 1x − =

21.3.  a)  3 tan( ) 2 3x + = 21.4.  a)  √3 tan(𝑥) + 2 = 5 

          b)  3 tan( ) 6 3x + = b) √3 tan(𝑥) + 4 = 3

In exercises 21.5 and 21.6, the equations are not linear. However, they can be reduced to 

the linear equations by treating them as quadratic equations with respect to the 

corresponding trig functions. See more non-linear equations in the next session. 

21.5 a)  2 cos2 𝑥 − cos 𝑥 = 0 21.6.  a)  2 cos2 𝑥 + cos 𝑥 = 0

b) 2 cos2 𝑥 − cos 𝑥 − 1 = 0 b) 2 cos2 𝑥 + cos 𝑥 − 1 = 0

c) tan2 𝑥 − tan 𝑥 = 0 c) tan2 𝑥 + tan 𝑥 = 0

In exercises 21.7 – 21.10, round the answers to the nearest hundredth. 

21.7. a)  5cos( ) 2 1x − =  21.8.  a)  4cos( ) 1 2x − =

b) 7cos( ) 6 2x + = b) 6cos( ) 5 3x + =

21.9. a)  3tan( ) 1 5x − = 21.10. a)  2 tan( ) 3 5x − =  

b) 4 tan( ) 7 5x + = b) 3tan( ) 4 2x + =

Challenge Problems 

21.11.  Prove that the following equations have solutions in the interval  )0, 2  only for the

indicated values of a. Find the corresponding solutions. The letter n below means any 

integer. 

a) sin(𝑥) + cos(𝑎𝑥) = 2, a = 4n.

b) sin(𝑥) − cos(𝑎𝑥) = 2, a = 4n + 2.

c) sin(𝑎𝑥) cos( 𝑥) = 1, a = (4n – 1)/2.

d) sin( 𝑥) cos(𝑎𝑥) = 1, a = 4n, or a = (4n +2)/3.
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Session 22 
 

Trigonometric Identities and None-Basic Equations 

  

Trigonometric Identities 

Let’s compare the two statements: 

sin cos 1x x+ =  and 
2 2sin cos 1x x+ = . 

They look pretty much similar. However, they are completely different. The first one is the 

equation and the second one is the identity. 

As we already know, equation is a statement that is true only for some specific values of 

variable, and the main problem for equation is to solve this, which means to find these 

specific values. Such values are called solutions or roots of the equation. For example, the 

values 0x =  and / 2x =  are roots of the equation sin cos 1x x+ = . We can check this 

by substituting these values in the equation. We will have sin 0 cos0 0 1 1+ = + =  and 

( ) ( )sin / 2 cos / 2 1 0 1 + = + = , so the equation becomes a true statement. If we pick, 

for example, x = , it is not a root, because by substituting   for x, the equation does not 

become a true statement: ( ) ( )sin cos 0 1 1 1 + = − = −  . In example 22.7 below, we 

show that roots 0 and / 2  are the only roots of the equation sin cos 1x x+ =  in the 

interval  )0, 2 .  

On the contrary, the second statement 
2 2sin cos 1x x+ =  is true for any value of x, no 

exceptions. We can check this using the definitions of sine and cosine as the vertical and 

horizontal coordinates of points on the unit circle: 

 

 

 

 

 

 

Using these coordinates (i.e. sin x  and cos x ) together with the radius (which is equal to 

1) we can form a right triangle if a point ( )sin , cosx x  lies in the 1st quadrant. By the 

Pythagorean Theorem, 
2 2sin cos 1x x+ = . We can check that this statement is true for all 

quadrants. Statements like this are called identities. Here is the exact definition. 

Definition. Statement ( ) ( )f x g x= , where f  and g  are two functions, is called the 

identity, if this statement is true for all values of variable x from the common domain of 

functions f  and g . 

1 0 

x 

.  
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The main problem for identity is to prove it, not to solve. In general, it is not possible to 

give an exact recipe how to prove an identity. Common guideline is to try to modify one 

or both sides f  and g  of the identity to get the same expression. Below we consider 

several examples. 

Note: formally speaking, we can treat the identity f = g as a special case of an equation, 

that has solutions for any point from the common domain of the functions f and g. However, 

here we distinguish between the identity and the equation. 

Let’s start with identities that we call basic. They can be used to prove more complicated 

identities. Four of them are simply expressions of tan , cot , secx x x  and csc x  through 

sin x  and cos x : 

 

 

 

 

 

Another identity that we have already proven above is: 

 

 

We call this the main identity (it is also called the Pythagorean identity). It allows us to 

express 
2sin x  through 

2cos x  and vice versa: 
 

2 2sin 1 cosx x= −  and  
2 2cos 1 sinx x= − . 

 

From the main identity, we can derive two more identities that connect tan x  with sec x , 

and cot x  with csc x : just divide both sides of the main identity by 
2cos x  and 

2sin x : 

  

2 2

2 2 2

sin cos 1

cos cos cos

x x

x x x
+ =   and  

2 2

2 2 2

sin cos 1

sin sin sin

x x

x x x
+ =  

From here we get 

 

  

There are a lot of trig identities that can be derived from the basics. Let’s consider some 

examples. 

Example 22.1. Prove the identity ( )
2 2tan 1 2 tan secx x x+ = + . 

Solution. ( ) ( )
2 2 2 2tan 1 tan 2 tan 1 tan 1 2 tan sec 2 tanx x x x x x x+ = + + = + + = + . 

Example 22.2. Prove the identity 
2 2

2 2

1 1
sec csc

sin cos
x x

x x
+ =  . 

Solution. We will modify the left side to get the right side: 

sin cos 1 1
tan , cot , sec , csc

cos sin cos sin

x x
x x x x

x x x x
= = = =  

2 2sin cos 1x x+ =  

2 2 2 2tan 1 sec , 1 cot cscx x x x+ = + =  
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2 2
2 2

2 2 2 2 2 2 2 2

1 1 cos sin 1 1 1
csc sec

sin cos sin cos sin cos sin cos

x x
x x

x x x x x x x x

+
+ = = =  = 

 
. 

Example 22.3. Prove the identity 
2 2 4 4sin cos sin cosx x x x− = − . 

Solution. This time we modify the right side using the formula ( ) ( )bababa +−=− 22
: 

( ) ( )4 4 2 2 2 2 2 2sin cos sin cos sin cos sin cosx x x x x x x x− = −  + = − . 

Example 22.4. Prove the identity  ( )
21 sin

tan sec
1 sin

x
x x

x

+
= +

−
. 

Solution. Here both sides look quite complicated, and we modify both of them. 

To modify the left side, we multiply the numerator and denominator by 1 sin x+ . Then, 

using the identity 
2 21 sin cosx x− =  for the denominator, we get 

        

( )( )

( )( )

( )
2 2

2 2

2
2 2

2 2 2

2 2

1 sin 1 sin 1 sin1 sin 1 2sin sin

1 sin 1 sin 1 sin 1 sin cos

1 2sin sin sin 1
sec 2 tan

cos cos cos cos cos

sec 2 tan sec tan .

x x xx x x

x x x x x

x x x
x x

x x x x x

x x x x

+ + ++ + +
= = =

− − + −

= + + = +  +

= +  +

 

Now let’s modify the right side of the original identity: 

( )
2 2 2tan sec tan 2 tan sec secx x x x x x+ = +  +  

We’ve got the same expression as for the left side. Identity is proved. 

 

None-Basic Trigonometric Equations 

In two previous sessions we solved basic trig equations sin , cosx a x a= =  and tan x a=

. Now we consider slightly more complicated equations that can be reduced to basic. To 

solve some of the equations, we will use basic identities. All equations we will solve in 

radians and in the interval  )0, 2 . 

Example 22.5. Solve the equation 
28sin 14sin 15 0x x+ − = . Round the answer to the 

nearest hundredth. 

Solution. This equation can be treated as a quadratic equation with respect to xsin .  Using 

the notation sin x u= , the equation becomes quadratic with respect to variable u: 
28 14 15 0u u+ − = . It can be solved by the method described in session 2: 

1) Construct the reduced equation by multiplying the last coefficient –15 by the leading 

coefficient 8:  
2 14 15 8 0u u+ −  =  or 

2 14 120 0u u− − = . 

2) Solve the above reduced equation: ( )( )6 20 0 6u u u− + =  =  and 20u = − . 
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3) Get the roots of the original equation by dividing 6 and –20 by the leading coefficient 

8: 

6 3
0.75

8 4
u = = =  and 

20 5
2.5

8 2
u

−
= = − = − . 

 Replacing u with sin x , we get two basic trig equations: sin 0.75x =  and sin 2.5x = − . 

We can solve them in the same way as we did in the previous sessions. 

1) Equation sin 0.75x =  has two solutions in the interval  )0, 2 : 

               
1sin (0.75) 0.85x −= =  and 

1sin (0.75) 2.29x  −= − = . 

2) Equation sin 2.5x = −  does not have solutions because xsin  cannot be less than 1−
. 

Final answer: there are two solutions 0.85x =  and 2.29x = . 

Example 22.6. Solve the equation 
28sin 2cos 5 0x x− − = . 

 Solution. We can rewrite this equation in terms of cos x  using the identity 
2 2sin 1 cosx x= − . Substituting this expression into the original equation, we obtain 

( )2 28 1 cos 2cos 5 0 8 8cos 2cos 5 0x x x x− + − =  − − − =   

2 28cos 2cos 3 0 8cos 2cos 3 0x x x x− − + =  + − = . 
 
Similar to example 22.5, we can treat this equation as a quadratic with respect to cos x . 

Letting cosu x= , we have the equation 
28 2 3 0u u+ − = . It can be solved in the same 

way as in example 22.5. We omit the details and get 
1

0.5
2

u = =  and 
3

0.75
4

u = − = − . 

Replacing u with cos x , we get two basic trig equation cos 0.5x =  and cos 0.75x = − . 

Let’s solve them. 

1) Equation cos 0.5x =  has two solutions (which are special angles) 

 ( )1cos 0.5 60
3

x
−= = =  and 

5
2

3 3
x

 
= − = . 

2) Equation cos 0.75x = −  also has two solutions (which can be find using the calculator). 

We round the answer to the nearest hundredth: 

( )1cos 0.75 2.42x −= − =  and ( )12 cos 0.75 3.86x  −= − − = . 

Final answer: there are four roots: 
5

, , 2.42,
3 3

x x x
 

= = =  and 3.86x = . 

Note. The first two roots are exact solutions, while the last two are approximations to two 

decimal places. 

Example 22.7. Solve the equation 2sin tan 3 tan 0x x x + = . 
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Solution. We can factor out tan x : ( )tan 2sin 3 0x x + = . Now equation can be split 

into two: tan 0x =  and 2sin 3 0x + = . The first one is basic, and the second one can be 

written as basic: sin 3 / 2x = − . Let’s solve them. Both of them have two solutions. 

For tan 0x = , 0x =  and x = . 

For sin 3 / 2x = −  we can use steps described in Session 20: 

Consider the equation for the reference angle rx : 

sin 3 / 2 3 / 2 60 / 3.r rx x = − =  = =  

Since sin 0x  , angle x is located in the 3rd and 4th quadrants, and we have two solutions: 

/ 3 4 / 3rx x   = + = + =  and 2 2 / 3 5 / 3rx x   = − = − = . 

Final answer: there are four solutions: 0, , 4 / 3, 5 / 3x x x x  = = = = . 

 

Example 22.8. Solve the equation sin cos 1x x+ = . 

Solution. Let’s square both sides: 

 ( )
2 2 2 2sin cos 1 sin 2sin cos cos 1x x x x x x+ =  +  + = . 

Using the main identity 
2 2sin cos 1x x+ = , we can simplify the above equation: 

1 2sin cos 1 2sin cos 0 sin cos 0x x x x x x+  =   =   = . 

This equation can be split into two basic equations: sin 0x =  and cos 0x = . 

Equation sin 0x =  has two solutions 0x =  and x = . Equation cos 0x =  also has two 

solutions 
2

x


=  and 
3

2
2 2

x
 

= − = . So, it looks like the original equation has four 

solutions:
3

0, , ,
2 2

x x x x
 

= = = = . However, this is not true. We need to be very 

careful and check these values with the original equation. The reason is that when we 

square both sides of an equation, we can get additional roots that are extraneous to the 

original equation. We already saw that in session 8, examples 8.6 and 8.8. Let’s check the 

above four values. 

The values  0x = , 
2

x


=  and x =  we already checked at the beginning of this session: 

0 and 
2


 are roots, but x =  is not. Let’s check 

3

2
x


= : 

 

3 3
sin cos 1 0 1 1

2 2

    
+ = − + = −    

   
. So, 

3

2
x


=  is not a root, and we reject it. 

Final answer: there are only two roots 0x =  and 
2

x


= . 
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Exercises 22 

In exercises 22.1 – 22.12, prove the given identities. 

 

22.1.  
2 2 2cos tan 1 cosx x x = −    22.2.  

2 2 2sin cot 1 sinx x x = −  

22.3.  cot cos csc sinx x x x = −    22.4.  tan sin sec cosx x x x = −  

22.5.  
cos

csc sin
tan

x
x x

x
− =     22.6.  

sin
sec cos

cot

x
x x

x
− =  

22.7.  
tan tan

2csc
1 cos 1 cos

x x
x

x x
− =

− +
   22.8.  

cot cot
2sec

1 sin 1 sin

x x
x

x x
− =

− +
 

22.9.  
cot cot

2sec
1 csc 1 csc

x x
x

x x
− =

+ −
   22.10.  

tan tan
2csc

1 sec 1 sec

x x
x

x x
− =

+ −
 

22.11.  

4 4
2

2

cos sin
2 sec

cos

x x
x

x

−
= −    22.12.  

4 4
2

2

sin cos
2 csc

sin

x x
x

x

−
= −  

In exercises 22.13 – 22.26, solve the given equations in the interval  )0, 2 . Use radian 

measure. If it is possible to find exact solutions, write them in terms of  . If it is not 

possible, round the answers to the nearest thousandth. 

22.13.  
2cos ( ) cos( )x x=     22.14.  

2sin ( ) sin( )x x=  

22.15.  
2sin ( ) sin( ) 0x x+ =     22.16. 

2cos ( ) cos( ) 0x x+ =  

22.17.  
24cos ( ) 1 1x − =     22.18.  

26sin ( ) 1 4x + =  

22.19.  
22sin ( ) 3sin( ) 2x x− =    22.20.  

22cos ( ) 7cos( ) 3x x+ = −  

22.21.  
23sin ( ) cos( ) 1 0x x− − =    22.22. 

25cos ( ) sin( ) 1 0x x+ − =  

22.23. 3sin( ) tan( ) 3 sin( )x x x =    22.24. cos( ) tan( ) 3 cos( )x x x =  

22.25. sin( ) cos( ) 1x x− =     22.26. cos( ) sin( ) 1x x− =  

Challenge Problem 

22.27. Solve the following equation in the interval  )0, 2 : 

81sin
2 𝑥 + 81cos

2 𝑥 = 30 

Hint: There are eight roots. To find them, you can use a new variable 𝑢 = 81sin
2 𝑥.  
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Session 23 
 

Logarithms 
 
Consider the following problem. Suppose we have three numbers x, y and z, that are 

connected by the equation 
xy z= . How to solve this equation for x and for y? 

It is easy to solve for y: raise both sides of the equation to the power 
1

x
, and get 

 ( )
1 11

1

x
x

x x x xxy y y y y z


= = = = = .  So, 

1

xy z= . 

It is important to understand that even we obtained the formula 

1

xy z= , this formula, in 

general, does not give us a direct way (a finite sequence of arithmetic operations) to get the 

exact answer. Actually, the expression 

1

xz  only provides a notation for a specific operation 

on x and z, and the question of how to perform this operation is a separate story (which is 

beyond the scope of this textbook). 

Similar situation occurs when we want to solve the equation 
xy z=  for x. In other words, 

we want to express power x in terms of the base y and number z. Of course, for some 

specific values of y and z, it is easy to do. 

Example 23.1. Solve the equation 2 8x = . 

Solution. This equation can be solved directly. Indeed, we can represent the number 8 in 

the exponential form with the base of 2: 
328 = . Then the equation takes the form 

32 2x = . From here we immediately conclude that x = 3. 

However, in general, we cannot solve the equation 
xy z=  for x so easily. Consider, for 

example, equation 2 6.x =  Because 22 4=  and 
32 8= , we can just estimate that x should 

be somewhere between 2 and 3. But where? We cannot indicate the exact value. At the end 

of this session we will be able to get an approximation. We will see in Example 23.8 that 

up to three decimals, 2.585.x   

In general, we may think of the solution x of the equation 
xy z=  as a result of some 

specific operation that we perform on y and z. In other words, we consider x as some 

function of two variables y and z. Since we have a function, we need a notation for it. You 

may invent your own notation. For example, using the abbreviation “sol” for solution, we 

can write x = sol(y, z). In mathematics, the following notation is used: 𝑥 = log𝑦 𝑧 . We read 

this as the “logarithm (or, in short, log) of the number z with the base y”. So, the solution 

of the equation 
xy z=  with respect to x is 𝑥 = log𝑦 𝑧. 

In the definition below, we simply change letter y to b and z to c. 
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Definition of Logarithm. Let b be a positive number not equal to 1, and c be any positive 

number. Then logbx c=  is the solution of the equation 
xb c= . In other words, the logarithm 

is a power to which we raise the base b to get the number c. 

Note. You may be wondering why the base 1b  . Well, let’s b = 1, so we consider the 

equation cx =1 . If we raise 1 to any power, the result is still 1, so we have c = 1, and any 

number x satisfies the equation 11 =x . Therefore, in this case, the solution 1log 1x =  does 

not make sense, since it can be any number. Another restriction is b > 0. This is to avoid 

problems with complex (not real) numbers. For example, ( )
1/ 2

1 1− = −  is not a real 

number, so we exclude negative base b.  Also, we put the restriction on number c: c > 0. 

This is because 
xc b= , and a positive b raised to any power is positive, so for a non-

positive c logarithm does not exist. 

In practice, often number 10 is used as the base of logarithms. Such logarithms are called 

common ones. Usually, for simplicity we drop the base 10 in the notation of common logs. 

So, 

    cc 10loglog =  

 
When working with logs, it is often convenient to convert them into exponential 

expressions. If we denote given logarithm by x (i.e. logb c x= ), we can re-write it (by 

definition) as 
xb c= . To make it easier to use this technique, you can memorize the 

following “Circular Rule” for conversion: in logb c x= , take the base b, raise it to the x 

power, and you get c: 

 

       log x

b c x b c=  =  

 

This rule says that two statements: logbx c=  and 
xc b=  are equivalent. 

Logarithms were invented by Scottish mathematician John Napier in early 1600, and the 

notation log was introduced by German mathematician Gottfried Leibniz in 1675. 

In some cases, it is easier to operate with exponential expressions than with logarithms. We 

will see this in the following example. 

Example 23.2. Calculate or simplify 

a) 8log2  

b) 100log  

c) 0001.0log  

d) log 1b  

e) logb b  

f) log n

b b  
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g) 
logb c

b  

 

Solution.  

a)  The problem for computing 8log2  is, in fact, the same as example 23.1, but written in 

a different form. Indeed, if 8log 2=x , then, by the circular rule, 82 =x
. From example 

23.1 we have x = 3, so 38log 2 = . 

b) Let 100log100log 10==x . By the circular rule, 
21010010 ==x
, 

so log100 2x = = . 

c) Let 0001.0log=x . Then 
4100001.010 −==x
, so x = log 0.0001 4= − . 

d) Let log 1bx = . Then 
01xb b= = . Therefore, x = log 1 0b = . 

e) Let logbx b= . Then 
1xb b b= = . Therefore, x = log 1b b = . 

f) Let log n

bx b= . Then 
x nb b= . Therefore, x = log n

b b n= . 

g) At the first glance, the expression 
logb c

b  looks rather complicated. However, if you look 

closely at this, you will realize that it is actually a very simple. Indeed, if we denote 

logb c x= , then 
xb c= , so, 

logb c xb b c= = . 

As you saw in the examples above, they were easily solved after we denoted the logarithm 

by a single letter (for instance, by x), and then converted the logarithmic expression into an 

exponential one. We will use this method frequently. 

Note. Try to memorize answers of problems 23.2, d) and e): for any base b, 

 

                                 log𝑏 1 = 0  and  log𝑏 𝑏 = 1 

  

Example 23.3. Prove that 1log logb

b

c c= − . 

Solution. Let’s use letters x and y for the above logs: 1log , logb

b

x c y c= = . Then 

1 1
,

x

x y

x
b c b c

b b

− 
= = = = 

 
. From here,  

x yb b− = . So, y x= − , or x = – y. Therefore, 

1log logb

b

c c= − . 

 
Basic properties of logarithms 

Multiplication Rule: log ( ) log logb b bx y x y = + . 

In words: the logarithm of the product is equal to the sum of the logarithms. 
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The proof of this statement can be done in a manner similar to examples 23.2 and 23.3. 

Denote each of the three logs by letters: log ( ), log , and logb b bA x y B x C y=  = = . 

Next, use the circular rule to convert them into exponential form: Ab x y=  , 
Bb x= , and 

.Cb y=  Now, multiply the second and third equations: , or .B C B Cb b x y b x y+ =  =   

Compare this equation with Ab x y=  . From here, 
A B Cb b += , hence A = B + C, or 

log ( ) log logb b bx y x y = + . 

Note. Before the era of calculators, there was a widely used device, the so-called 

logarithmic ruler, or slide ruler, that allowed multiplying numbers based on the 

Multiplication Rule for logarithms. Schematically, this device works like this. It contains 

two rulers that allow us to convert numbers into logs and vice versa. To multiply two 

numbers, the device converts them into logs and adds them up. According to the 

Multiplication Rule, this sum is the log of the product. Then the device converts this log of 

the product back to the product of the given numbers. So, the device performs (physically) 

summation, but mathematically we get multiplication. 

Example 23.4. Solve the equation 3)3(log)1(log 22 =−+− xx . 

Solution. Using the Multiplication Rule, we can combine both logs into one: 

3)3)(1(log 2 =−− xx . From here, 82)3)(1( 3 ==−− xx . This is a quadratic equation that 

can be written in standard form 0542 =−− xx . We can solve it by factoring: 

(x – 5)(x + 1) = 0, and we get two solutions: x = 5 and x = – 1. Let’s check these solutions 

with the original equation. Let x = 5. Then 

    3122log4log)35(log)15(log 2222 =+=+=−+− , 

so everything is OK with this. Now, let x = – 1. We obtain the logs of negative numbers: 

)2(log 2 −  and )4(log 2 − . Such logs do not make sense (they are undefined). Therefore, we 

must reject the value x = – 1. Final answer: the equation has the only solution x = 5. 

Notes.  

1)  Example 23.4 shows that we need to be very careful when solving log equations: we 

must check the answer with the original equation. If x and y are both negative, then the 

left side of the equation log𝑏(𝑥) + log𝑏(𝑦) = log𝑏(𝑥𝑦) is undefined, while the right 

side is defined. So, when we combine the left side to get the right side, we can get 

extraneous (incorrect) root. 

2)  Keep in mind that log log log ( )a b bx y x y+    if a b . The Multiplication Rule only 

applies to logs with the same base. 

Quotient (or Division) Rule: log log logb b b

x
x y

y

 
= − 

 
. 

In words: the logarithm of the quotient is equal to the difference of the logarithms. 

The proof is similar to that given for multiplication rule. The proof of this statement as well 

as others statements given below, are left as exercises. 
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Note. The above two rules: the multiplication and division rules for logs, can be considered 

as the inverse rules for multiplication and division of exponential expression. If we multiply 

exponential expressions, we add their powers (powers are logs), if we add logs, we multiply 

their numbers. If we divide exponential expression, we subtract their powers, if we subtract 

logs, we divide their numbers. In the next session, we will discuss more about this “inverse 

connection”. 

Example 23.5. Solve the equation 1)74log()8log( =−−+ xx . 

Solution. Using the Division Rule, we can represent the left part as the logarithm of the 

quotient, and the equation takes the form 1
74

8
log =

−

+

x

x
. From here 1010

74

8 1 ==
−

+

x

x
. 

Solving this equation, we get x = 2. Let’s check this answer with the original equation: 

 1011log10log)724log()82log( =−=−=−−+ .  So, x  = 2 is a solution. 

 

Power Rule: log logn

b bx n x=  . 

In words: the logarithm of an exponential expression is equal to its power times the 

logarithm of its base (the base x of the exponential expression 𝑥𝑛, not the base of log). 

 

Example 23.6. Calculate without using a calculator: 

  6 6 63 log 3 log 75 2 log 10 − +   

Solution. Here we can use all three rules listed above. We can modify the first and third 

terms like this: 

3

6 6 63 log 3 log 3 log 27 = =  

2

6 6 62 log 10 log 10 log 100 = =  

From here 

6 6 6 6 6 6

2

6 6 6 6

3 log 3 log 75 2 log 10 log 27 log 75 log 100

27 100
log log 36 log 6 2 log 6 2.

75

 − +  = − +


= = = =  =

 

Some scientific calculators allow us to calculate logarithms with only specific bases: base 

10 (common logs), and base e (this is a special constant number which we will discuss later 

in session 25). Logs with the base e are denoted with the symbol ln and are called the 

natural logarithms. So 

          ln logex x=  

 To calculate logs with other bases, we need a way to convert logs from one base to another. 

The following rule allows us to do this. 
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Change-of-Base Rule: 

          
log

log
log

d
b

d

x
x

b
= . 

If we need to calculate a logarithm with the base b, but our abilities are limited only by the 

base d, we can perform a conversion from the base b to d using the Change-of-Base Rule, 

and then make the calculations. If we put x = d, we get a special case of the Change-of-

Base Rule: 

1
log

log
b

d

d
b

= . 

To prove the Change-of-Base Rule, denote logby x=  and convert it into exponential form 

by = x . Now apply log with the base d to both sides and use the power rule: 

log𝑑 𝑏𝑦 = log𝑑 𝑥    ⟹    𝑦 log𝑑 𝑏 = log𝑑 𝑥    ⟹    𝑦 =
log𝑑 𝑥

log𝑑 𝑏
   ⟹    log𝑏 𝑥 =

log𝑑 𝑥

log𝑑 𝑏
 . 

 
Example 23.7. Assume that you have a calculator that allows you to calculate common 

logs only (logs with the base of 10). Calculate 5log3 . 

Solution. Using the Change-of-Base Rule and a calculator, we have 

465.1
477.0

699.0

3log

5log
5log3 = . 

Logarithms are often useful in solving exponential equations in which the powers of 

exponential expressions are unknown. 

 

Example 23.8. Solve the equation 2 6x =  that we discussed at the beginning of this session. 

Approximate the solution to the nearest thousandth. 

Solution. We take the logarithm of both sides of this equation to the base 10 (common 

log): log 2 log 6.x =  Using the Power Rule, log 2 log 6,x  =  and 
log 6

log 2
x = . This is the 

“exact answer”. Using a calculator, we can get a numerical approximation: 

log 6 0.7781
2.585

log 2 0.3010
  . So, 2.585.x   

 

Example 23.9. Solve the equation 53 12 =−x
. Approximate the solution to the nearest 

hundredth. 

Solution. As in example 23.8, we take the log of both sides: 5log3log 12 =−x
. Using the 

Power Rule, we have 5log3log)12( =−x . From here, 
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23.11
477.0

699.0

2

1
1

3log

5log

2

1
,1

3log

5log
2,

3log

5log
12 








+








+=+==− xxx . 

So, 23.1x . 

Note. The method of taking the logarithm of both sides of a given equation, which we used 

in examples 23.8 and 23.9, is very often used for equations containing exponents. 

Theoretically, we can take the logarithm with any base. We used common logs (logs with 

the base 10) to be able to use a calculator. We could also use natural logs (logs with the 

base e) since most calculators allow us to calculate logs with this base. 
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Exercises 23 

In exercises 23.1 and 23.2, convert the given statements from logarithmic form to 

exponential form. 

23.1.  a)  2log 16 4=      23.2.  a) 4log 64 3=  

          b)  2

1
log 4

16

 
= − 

 
              b)  4

1
log 3

64

 
= − 

 
 

 

In exercises 23.3 and 23.4, convert the given statements from exponential form to 

logarithmic form (use the bases of exponential expressions as the bases of logs). 

23.3.  a)  
32 8=      23.4.  a) 

43 81=  

          b)  
3 1

2
8

− =                b)  
4 1

3
81

− =  

 

In exercises 23.5 and 23.6, calculate without using a calculator. 

23.5.  a)  3log 81     23.6.  a)  4log 16  

          b)  log1000               b)  log 10,000 

          c)  log 0.01              c)  log 0.001 

          d)  1

2

log 64               d)  1

3

log 27  

          e)  6

1
log

36
               e)  4

1
log

16
 

          f)  5

4log 4                f)  4
6log 6  

          g)  ( )4
3log 9 3               g)  ( )5

7log 49 7  

 

In exercises 23.7 – 23.10, solve the given equations. 

23.7.  a)  3 27x =      23.8.  a)  5 625x =  

          b)  
3 1 1

4
64

x− =                b)  
2 3 1

6
36

x− =  

          c)  

2 3
1

125
5

x+

 
= 

 
              c)  

3 2
1

81
3

x+

 
= 
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23.9.  a)  3 3log ( 4) log ( 2) 3x x− + + =   23.10. a)  4 4log ( 4) log ( 2) 2x x+ + − =  

          b)  5 5log (7 3) log ( 3) 2x x− − − =             b)  2 2log (15 3) log ( 3) 3x x+ − + =  

 

In exercises 23.11 and 23.12, calculate without using a calculator. 

 

23.11. 8 8 8log 32 2 log 6 log 9−  +   23.12.  3 log 20 2 log3 log 72 +  −  

In exercises 23.13 and 23.14, let lnu x=  and lnv y= . Write given expressions in terms 

of u and v. 

23.13.  ( )3 2ln x y     23.14.  ( )4 5ln x y  

 
In exercises 23.15 and 23.16, let  logu x=  and logv y= . Write given expressions in terms 

of  u and v. 

23.15.    

7

6
log

x

y

 
 
 

   23.16. 

3

2
log

y

x

 
 
 

 

 

In exercises 23.17 and 23.18, write the explression as a single logarithm. 

    

23.17.  a)  3 log(𝑥) − 2 log(𝑦) +
2

3
log(𝑧) 23.18.  a)  4 log(𝑥) − 3 log(𝑦) +

4

5
log(𝑧) 

            b)  5 log(𝑥) + 6 log(𝑦) −
3

4
log(𝑧)  b)  6 log(𝑥) + 7 log(𝑦) −

5

6
log(𝑧)  

 

In exercises 23.19 and 23.20, solve the given equations. Round your answers to the nearest 

thousands. 
 

23.19. a)  6 9x =     23.20.  a)  5 8x =  

           b)  
3 27 4x+ =                 b)  

5 34 7x− =  

           c)  
4 3 5xe + =                 c)  

3 4 6xe − =  

 

In exercises 23.21 and 23.22, assume that a calculator allows us to calculate only common 

logs (logs with the base 10) and natural logs (logs with the base e). Calculate the given 

expressions using both types of logs. Round your answers to the nearest thousands. 

Compare the results when using “log” and “ln”. 

 

23.21.  7log 8      23.22. 8log 7  
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Challenge Problems 

23.23.  Prove that ( )1

1
log logb

b

a
a

 
= 

 
. 

23.24.  Prove that 𝑎log 𝑏 = 𝑏log 𝑎. 

23.25.  Calculate without calculator 

1

log2(6)
+

1

log3(6)
 

23.26.  Consider the equation 

 log ( ) log ( )c cx a x b p q+ + + = + ,  where 
p qb a c c= − + . 

           Prove that the only solution of this equation is 
px c a= − .  
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Session 24 
 

Exponential and Logarithmic Functions 
 

We already studied some functions: quadratic functions (parabolas) and trigonometric 

functions. In this session, we will study exponential expressions and logarithms from the 

point of view of functions. For these functions, we will denote by the letter a any positive 

number, not equal to 1, and call it the base of a function.  

Exponential Functions   

We can treat the expression 
xa as a function of x: if we pick any number x, the expression 

will produce the value xay = . We can also write xaxf =)( . The domain of this function 

(the set of possible values of x) is the set of all real numbers (since any number x can be 

taken as a power, so there are no exceptions), but the range (the set of possible values of y) 

is the set of only positive numbers (since the value of 
xa  cannot be negative number or 

zero). 

We are interested in the behavior of this function. It means that we want to know what 

happens with the value y when x takes some specific values, when x increases to positive 

infinity, or decreases to negative infinity. One of the ways to study a function is to visualize 

it, in other words, construct its graph. One point on the graph is easy to observe: if x = 0, 

then 10 == ay . So, for any base a, the graph of the exponential function xay =  passes 

through the point (0, 1) which is located on the y-axis one unit above the origin. It turns 

out that the shape of the graph of the function y = ax depends on whether the base a is 

greater or less than 1. (Case a = 1 is not interesting since 1x =1 for any x, and the graph of 

y = 1 is a horizontal line). 

1. Case a > 1. In this case, the larger x, the larger y. We say that the function xay =  

increases, and it increases very fast. For example, if we take a = 2, we can construct the 

following tables of values of the function 2xy =  for non-negative and negative values of 

x: 

 

x 0 1 2 3 4 5 
xy 2=  1 2 4 8 16 32 

Non-negative value of x 

 

x – 1 – 2 – 3 – 4 – 5 

xy 2=  
2

1
2 1 =−

 
4

1
2 2 =−

 
8

1
2 3 =−

 
16

1
2 4 =−

 
32

1
2 5 =−

 

Negative values of x 
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Based on these two tables we can draw the graph of the function xy 2= : 

 

 

 

 

 

 

 

 

 

 

Notice that when x goes to positive infinity (moving to the right), y also goes to positive 

infinity (moving up), and when x goes to negative infinity (moving to the left), y approaches 

to zero (approaches to the x-axis but never touches it). We say that the x-axis is the 

horizontal asymptote of the function xay = . 

2. Case 0 < a < 1. In this case, the larger x, the smaller y. We say that the function xay =  

decreases. Let’s take as an example 
2

1
=a . We can graph the function 

x

y 







=

2

1
 in the 

same way as we did above for the function xy 2=  by creating a table of its values. 

However, we can get this graph almost immediately, if we notice that x

x

x

−==







2

2

1

2

1
. So, 

we actually need to graph the function xy −= 2 . 

Let’s consider in general the relationship between the graphs of the functions )(xf  and 

)( xf − . Points (x, y) and (–x, y) are symmetrical to each other with respect to the y-axis. 

Therefore, the graphs of )(xf  and )( xf −  are also symmetrical to each other with respect 

to the y-axis. This means that if we have already drawn the graph of )(xf , then to get the 

graph of )( xf − , we can just reflect the graph of )(xf  with respect to the y-axis. 

We can apply the above reasoning to the function x

x

y −=







= 2

2

1
 and reflect the graph of 

xy 2=  with respect to the y-axis. Here is the resulting picture 

                  

  

xy 2=  
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As you can see, when x goes to negative infinity, y increases to positive infinity, and when 

x goes to positive infinity, y approaches to zero (but doesn’t equal to it), so the 

x-axis is still horizontal asymptote of the function 

x

y 







=

2

1
. 

Logarithmic Functions 

Similar to exponential expressions, we can treat the logarithm xalog  (with fixed base a) 

as a function of x: xy alog= . Its domain (the set of possible values of x) is the set of all 

positive numbers, and range (the set of possible values of y) is the set of all real numbers. 

Note. Notice that the domain of xalog  is the same as the range of 
xa , and the range of 

xalog is the same as the domain of 
xa . This is not a coincidence: we will see shortly that 

this is related to the concept of inverse functions. 

Example 24.1. Find the domain of the following functions: 

a) log (3 1)ay x= +   b) log (5 2 )ay x= −  

Solution. Since the domain of the function xy alog=  is the set of all positive numbers, to 

find domains of given functions, we just need to solve the inequalities by making 

expressions in parentheses greater than zero: 

a)  3 1 0 3 1 1/ 3x x x+    −   − . So, the domain is the interval ( )1/ 3,−  . 

b)  5 2 0 2 5 5 / 2x x x−   −  −   . So, the domail is the interval ( ), 5 / 2− . 

All logarithmic functions (for any base a) have the same value of zero at x = 1: 

               01log =a . 

Thus, the graphs of all logs pass through the same point (1, 0) , located on the x-axis one 

unit to the right of the origin. Similar to exponential functions, the shape of the graph of 

the function xy alog=  depends on whether a is greater or less than 1. 

x

y 







=

2

1
 

204



 

Session 24: Exponential and Logarithmic Functions 

 

1. Case a > 1. In this case, as for the exponential function, the log function increases, but 

this time it increases very slowly. Let’s take as an example a = 2. Here are the tables 

of values of the function xy 2log=  for values of x greater and less than 1. 

 

x 1 2 4 8 16 32 

xy 2log=  0 1 2 3 4 5 
 

Values of x greater than 1 

 

x 
2

1
 

4

1
 

8

1
 

16

1
 

32

1
 

xy 2log=  – 1 – 2 – 3 – 4 – 5 

 
Values of x less than 1 

 

The graph of the function xy 2log=  is this 

                          

 

 

 

 

 

 

 

 

 

 

 

Here the y-axis is the vertical asymptote: y tends to negative infinity when x approaches to 

zero, but never touches the y-axis. 

   

2. Case 0 < a < 1. In this case, like for the exponential function, the function xy alog=  

decreases, but now it decreases very slowly. Let’s take the example of 
2

1
=a . To draw a 

graph of xy
2

1log=  without creating a table of values, we can use the result of example 

23.3 from the previous session: xx a

a

loglog 1 −= . In our particular case, 

xx 2

2

1 loglog −= . 

Let’s consider in general the relationship between the graphs of the functions )(xfy =  

and )(xfy −= . The points (x, y) and (x, – y) are symmetrical to each other with respect to 

xy 2log=  
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the x-axis. Therefore, the graphs of )(xf  and )(xf−  are also symmetrical to each other 

with respect to the x-axis. So, to get the graph of )(xf− , we can simply reflect the graph 

of )(xf  about the x-axis. You may recall that we discussed such relationship in session 11 

when we compared the graphs of the parabolas 2y x=  and 2xy −= . 

Applying this reasoning to the function xxy 2

2

1 loglog −== , we get the picture 

                                     

 

 

 

 

 

 

 

 

 

 

 
 
Here the y-axis remains the vertical asymptote. 

 

Relation between Exponential and Logarithmic Functions 

If you compare the tables of values of functions xy 2=  and xy 2log= , shown above, you 

may notice that the variables x and y exchange their values. This is not a coincidence. The 

fact is that the functions xay =  and xy alog=  are inverse to each other. Let’s consider 

this concept in general form. 

Let ( )y f x=  be a function. As we already mentioned, we can treat variable x as input that 

goes into function f, then f operates on x and produces the output y. Schematically, we can 

represent the function f by the diagram 
 
 

 

 

 

A function g is called the inverse to f, if it does the job opposite to f: it passes y back to x. 

In other words, the input of the inverse function is y, and the output is x. We usually denote 

the function inverse to f by 1−f . Schematically, we can represent the inverse function 1−f  

by the diagram 

 

 

 

Note. The notation 1−f  for inverse function may create confusion with the notation 
f

1
 for 

         f 
x (input) y (output) 

        f  –1  y (input) x (output) 

xy
2

1log=  
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the reciprocal function. Keep in mind that these are completely different functions. 

To find the function inverse to f, we can solve the equation y = f(x) for x, and then exchange 

x and y: replace x with y, and y with x. 

Example 24.2. Find the inverse function to 2xy = , where 0x . 

Solution. If we solve the equation 2xy =  for non-negative x, we get yx = . Now, just 

exchange x and y. The inverse function is xy = . 

Example 24.3. Find the inverse function to xy alog= . 

Solution. As in example 24.2, we solve the equation xy alog=  for x. Using the “Circular 

Rule” described in session 23, we have 
yax = . Now, exchange x and y, and get the inverse 

function xay = . 

As you can see, the logarithmic and exponential functions are inverse to each other. 
 

Let’s return to a general case of the function f, and see how the graphs of   f   and 1−f  are 

related. If (x, f(x)) is a point on the graph of  f, then the point ((f(x), x) will be on the graph 

of 1−f . The points with coordinates (a, b) and (b, a) are symmetrical to each other with 

respect to the line y = x, which is the bisector of the first and third quadrants. (To see that 

fact, you can look at some examples, like points (3, 4) and (4, 3), or try to prove this 

statement in a general form). Therefore, the graphs of the function f and its inverse 1−f  are 

symmetrical to each other with respect to the line y = x. 

Let’s draw together the graphs of the functions xy 2= and xy 2log=  which are inverse to 

each other: 
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Exercises 24 

In exercises 24.1 – 24.8, graphs of the given functions f and g are drawn. One of the graphs 

is labeled as A and another as B. Match the functions f and g with the graphs. Explain your 

answers. 
 

24.1.  ( ) 3 , ( ) 4x xf x g x= = .           24.2.  ( ) 4 , ( ) 5x xf x g x= = . 

 

 

 

 

 

 

 

 

 

 

 

 

24.3.  
1 1

( ) , ( )
3 4

x x

f x g x
   

= =   
   

.          24.4.  
1 1

( ) , ( )
4 5

x x

f x g x
   

= =   
   

. 

 

 

 

 

 

 

 

 

 

 
 
 

24.5.  3 4( ) log ( ), ( ) log ( )f x x g x x= = .         24.6.  4 5( ) log ( ), ( ) log ( )f x x g x x= = . 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

B 

A 

A 

A 

B 

B 

A 

B 

B 

A 
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24.7.  1 1

3 4

( ) log ( ), ( ) log ( )f x x g x x= = .         24.8.  1 1

4 5

( ) log ( ), ( ) log ( )f x x g x x= = . 

 

 

 

 

 

 

 

 

 

 

 

 

In exercises 24.9 and 24.10, find the inverse function to the function f(x). 

 

24.9.  a)  ( ) 3xf x =              24.10. a)  
3

( )
4

x

f x
 

=  
 

 

          b)  2

3

( ) log ( )f x x=             b)  5( ) log ( )f x x=  

In exercises 24.11 and 24.12, find the domains of the given functions. 

 

24.11. a)  log (2 3)ay x= +             24.12.  a)  log (4 5)ay x= +  

 

           b)  log (6 4 )ay x= −              b)  log (10 8)ay x= −  

 

A 
A B 

B 
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 I = PTR,  A = P(1+RT) 

Session 25 
 

Compound Interest and Number e 
 

If you deposit money to a bank, the bank pays you interest for using your money. If you 

borrow money from a bank, you pay interest to the bank. The interest may be simple or 

compound. To explain these, let’s start with some terminology and notation. 

P – Principal or Initial Value. This is the amount of money you deposit to the bank or 

       borrow from the bank. 

T – Time. This is the period of time during which the money is used (by you or the bank). 

In calculations, it is usually calculated in years. If the time period is several months, it 

is given by fraction or decimal. For example, T = 0.5 means 6 months. 

R – Rate. This is the interest rate used to pay for the use of money. This is usually indicated 

as a percentage per year. In calculations, it is used as a decimal. For example, if interest 

rate is 1.7%, in calculations it is used as 0.017. 

I – Interest. This is the amount of money that you (or the bank) earn for using money for T 

years. (Don’t confuse interest with rate: interest is dollar amount, while rate is 

percentage).  

A – Amount or Future Value. This is the amount of money that you will have in T years. 

The future value is the sum of two parts: Initial Value and Interest. So,  

A = P + I. 

Simple Interest 

This type of interest is usually used when you keep money for a short period of time, such 

as a few months. This interest is really simple to calculate. If you invest P dollars for one 

year at the rate of R (taking it as a decimal), then the interest I (that’s what you earn), is 

I = PR. If you keep money for T years, the total interest earned by you will be I =PRT. This 

is a formula of simple interest. As you can see, it’s really simple. We can also calculate the 

future value A: A = P + I = P + PRT = P(1 + RT). So, the basic formulas related to simple 

interest are 

 

 

Note. When using the above formulas, keep in mind that the rate R must be taken as a 

decimal (not as a percentage), and the time T should be in the same units of time as the rate 

R (usually in years).  

Example 25.1. Suppose you deposit $800 for 3 months into a bank that pays 5% of simple 

interest. Calculate the interest that the bank will pay you and the future value (the amount 

you will withdraw) after 3 months. 

Solution. We have 

P = 800,  R = 5% = 0.05,  25.0years
12

3
months3 ===T . 
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Using the above formulas for I and A, we get 

       1025.005.0800 === PRTI (dollars),    A = P + I = 800 + 10 = 810 (dollars). 

Compound Interest 

If you keep money in a bank for a long period of time (for example on CD – Certificate of 

Deposit, for several years), it is unfair to calculate interest using the above formula for 

simple interest. Indeed, if the principal is P, and the bank rate is R, then the amount 1A  

after the first year, according to the formula for future value with T = 1, is )1(1 RPA += . 

Assume that after the first year you do not withdraw your money. Then for the second year 

it would be unfair to take as a principal the original value P. Instead, it is reasonable to take 

the value of 1A  (which is, of course, greater than P) as a new principal. In other words, for 

the second year, the rate R should be applied not only to the initial deposit P, but also to 

the interest I = PR that you earned for the first year. Notice that according to the formula

)1(1 RPA += , the amount at the end of a year is equal to the amount at the beginning of the 

year times )1( R+ . Therefore, at the end of the second year the amount, denoted as 2A , 

should be expressed thorough A1 by the same rule: 
 

   2

12 )1()1)(1()1( RPRRPRAA +=++=+= . 

If we continue the same reasoning, then in T years you will accumulate the amount of 
T

T RPA )1( +=  dollars. Formula 

                  TRPA )1( +=        

allows us to calculate the future value after T years, if the initial principal is P, and the bank 

interest is R.  

Although the above formula for future value is fairer than the corresponding formula for 

simple interest, it is still not fair enough. Here is the reasoning. After a certain (even a 

short) period of time, say, in half a year, your principal will be increased by earned interest 

during this period. However, according to the above formula, the original principal remains 

unchanged throughout the year, and only at the beginning of the next year the bank 

recalculates and replaces the original principal with a new value. It would be better (for 

customers) if such recalculations would be made more often. Many banks do that. They 

introduce a parameter called the compounding period. This is the period of time after 

which the bank recalculates the principal: the bank takes the principal, adds the earned 

interest and uses this sum as a new principal. Usually, bank compounds (recalculates) 

semiannually (every half of a year), quarterly (every three months), monthly, and even 

daily. Therefore, the above formula for the future value should be modified by including a 

new parameter N – the number of compounding periods per year.  

If interest is compounded yearly, then N = 1; if semi-annually, then N = 2; quarterly, then 

N = 4; monthly, then N = 12; weekly, then N = 52; daily, then N = 365. 

Let’s modify the above formula for future value if the investment is compounded monthly, 

i.e. N = 12. Since the rate R is constant throughout the year, interest for one month will be 
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TN

N

R
PA 








+= 1  

12

PR
I = . After the 1st month, future value is 1

12 12

PR R
A P I P P

 
= + = + = + 

 
. So, in order 

to get the future value for any month, we should take the future value for the previous 

month and multiply it by the expression 1
12

R
+ . Therefore, after the 2nd month, the future 

value is 

    

2

1 1 1
12 12 12

R R R
A P P

    
= + + = +    

    
. 

At the end of the 1st year, the future value becomes A = P (1 +
𝑅

12
)
12

. 

And, at the end of the T years, the future value becomes

12

1
12

T
R

A P
 

= + 
 

. In similar way, 

for any the number of compounding periods per year N, we can get the general compound 

interest formula: 

 

 

 Here 
R

N
 is the rate for one compounding period, and TN is the total number of 

compounding periods for T years. For example, if rate R = 2.4%, deposit is compounded 

quarterly (so, N = 4), and the number of years T = 5, then 
0.024

0.006
4

R

N
= =  and  

5 4 20TN =  = . 

Interest I on this deposit is the difference between future value A and the original principal 

P: 

            











−








+=−








+=−= 111

TNTN

N

R
PP

N

R
PPAI . 

Example 25.2. Suppose you deposit $300 for 8 years at 3% compounded quarterly. Find 

the future value and earned interest. 

Solution. We have: P = 300, R = 3% = 0.03, N = 4, T = 8. Substitute these values into the 

compound interest formula and calculate future value A: 

      

8 4

320.03
300 1 300 (1.0075) 300 1.2701 381.03

4
A



 
=  + =    = 

 
. 

So, the future value is $381.03. Interest I is the difference: 

          I = A – P = 381.03 – 300 = 81.03. 

Therefore, you will earn $81.03 for 8 years. 
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The compound interest formula can be used to find the rate R, or time T needed to 

accumulate the desired amount in the future. 

Let’s solve the problem to find time T in general form. Dividing both parts of the compound 

interest formula by P, we have 

TN

N

R

P

A








+= 1 .  

 

Now, take log from both sides: 







+=








+=

N

R
TN

N

R

P

A
TN

1log1loglog . 

From here, 









+

=

N

R
N

P

A

T

1log

log

. 

Note. You do not need to memorize this formula. To find time in particular problems, plug 

in given data into the compound interest formula, and apply log to both sides. 

Example 25.3. Suppose you deposit some amount of money at 6% compounded monthly. 

In how many years your deposit will be doubled? 

Solution. According to the problem, the future value A is twice as the principal P: 

A = 2P. Also, R = 6% = 0.06, N = 12. Substitute these data into the compound interest 

formula: 
12

0.06
1 2 1

12

TN T
R

A P P P
N

   
= +  = +   

   
. 

 Reduce (divide) both side by P and calculate the expression inside parentheses: 

( )
12

2 1.005
T

= . Now apply log to both sides  

               ( ) ( )
12

log 2 log 1.005 log 2 12 log 1.005
T

T=  =   . 

From here 
log 2

11.6
12 log(1.005)

T = =


. 

. 
So, your deposit will be doubled in about 11.6 years. 
 
When you decide which bank to deposit your money to or which credit card to use for 

making only minimum payments, you need to consider not only the rate, but also the 

compounding period. To make a true comparison of different rates, we can compare the 

interest that accrues on one dollar in one year. This value is called the effective rate or 

APY (Annual Percentage Yield). To get the formula for APY, we substitute the values 

P = 1 and T = 1 into the formula for the interest I (this formula is above example 25.2). We 

will have 
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        11 −







+=

N

N

R
APY . 

 Usually, APY is presented as percentage. 

Example 25.4. Suppose you have the option of using two credit cards for which you want 

to make only minimum payments. On the 1st card, you will pay 18% interest compounded 

monthly, and on the 2nd card  – 17. 9% compounded daily. Which deal is best for you? 

 

Solution. On the first glance, it looks like the 2nd card is better (you pay smaller rate). 

However, let’s compare APYs for these two cards. 

1st card:   1956.01
12

18.0
1

12

−







+=APY ,  or APY = 19.56%. 

2nd  card:   1960.01
360

179.0
1

360

−







+=APY ,  or APY = 19.60%. 

 
As you can see, although the rate on the 1st credit card is higher, you would prefer this card 

because its APY is lower and in the long run you will pay less interest. 

 

Continuous compound interest. Number e 

We saw that when you invest in a bank, it’s more profitable for you, if bank uses the 

compound interest formula instead of the simple one. Also, the shorter the compounding 

period, the greater your profit. We mentioned the cases of compounding semiannually, 

quarterly, monthly, and daily. But why should we be limited only with to these periods? 

Can the compounding period to be one hour, one minute, or even one second? The answer 

is yes. In this way we come up to a formula called continuous compound interest. 

To get this formula, let’s modify the compound interest formula: 

                

TR

R

N
TN

N

R
P

N

R
PA























+=








+= 11 . 

If we denote 
R

N

N
N

R
e 








+= 1 , then ( )TR

NePA = . 

Let’s see what happens to your income when the compounding period becomes shorter and 

shorter. In this case, interest is recalculated more often, and, as a result, the future value 

(i.e. your money) becomes larger. You might think that the future value will grow endlessly 

and, eventually, can become huge. However (unfortunately for you) this is not so. Your 

income has a limit. If N increases to infinity (becomes bigger and bigger), then the value 

R

N
 also increases to infinity. However, this is not the case for Ne  (and also for future value 
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TRPeA =  

( )TR

NePA = ). Although this value increases, it does not increase to infinity. Let’s calculate 

Ne  for some values of 
R

N
. 

R

N
 1 2 3 4 5 10 100 1000 

Ne  2 2.25 2.37 2.44 2.49 2.59 2.70 2.717 
 

It can be shown (it is done in Calculus courses) that if N continues to increase, the value of 

Ne  cannot be greater than 3. In fact, Ne  is getting closer and closer to a certain constant 

number. This number is denoted by the letter e and is approximately equal to 2.718. This 

number is called the Euler's number or the base of the natural logarithms. Most scientific 

calculators have a button to calculate the number e with even greater accuracy. 

Let’s return to the formula 
R

N

N
N

R
e 








+= 1  and denote power 

N
n

R
= . Then, by taking the 

reciprocal, 
1R

N n
=  and 

1
1

n

Ne
n

 
= + 
 

. If N is big, number n is also big and Ne e . We may 

say that 

    
1

1 2.718

n

e
n

 
 +  
 

, if number n is big. 

If we replace Ne  in the formula ( )TR

NePA =  with the number e, we will get the 

continuous compound interest formula 

 

 

 

This formula gives the maximum possible future value compared to the compound interest 

formula with any finite number N of compounding periods per year. 
 
Example 25.5. Suppose you invested $300 for 8 years at 3% compounded continuously. 

Find the future value and earned interest. 

Solution. We have: P = 300, R = 3% = 0.03, T = 8. Substitute these values into the above 

formula and calculate future value A: 

8 0.03 0.24300 300 300 1.27125 381.37TRA Pe e e= =  =  =  =  

So, the future value is $381.37. Interest I is the difference: 

 I = A – P = 381.37 – 300 = 81.37. 

Compare this result with the result of example 25.2. The difference in interest is small (34 

cents), but for large investments the difference becomes significant. 
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Session 25: Compound Interest and Number e 

 

Exercises 25 

Round all answers to the nearest cent. 

 

25.1.  Suppose you deposit $700 for 5 months into a bank that pays 2.5% simple interest. 

Calculate interest that bank will pay you and future value (amount that you can 

withdraw) after 5 months. 

25.2.  Suppose you deposit $600 for 7 months into a bank that pays 4% simple interest. 

Calculate interest that bank will pay you and future value (amount that you 

withdraw) after 7 months. 

25.3.  Suppose you deposit $1,200 for 5 years at 5% compounded monthly. Find the future 

value and earned interest. 

25.4.  Suppose you deposit $2,400 for 6 years at 2% compounded semiannually. Find the 

future value and earned interest. 

25.5. Suppose you made an investment of $1,200 for 5 years at 5% compounded 

continuously. Find the future value and earned interest. Compare with the results of 

exercise 25.3. 

25.6. Suppose you made an investment of $2,400 for 6 years at 2% compounded 

continuously. Find the future value and earned interest. Compare with the results of 

exercise 25.4. 

25.7. Suppose you deposit a certain amount of money at 4% compounded quarterly. In 

how many years will your deposit be doubled? 

25.8. Suppose you deposit a certain amount of money at 7% compounded daily. In how 

many years will your deposit be doubled? 

 

Challenge Problem 

25.9.  Suppose you want to invest $5,000 for the next 10 years. You are considering two 

banks for your investment. Bank A offers a rate of 7 % compounded semiannually. 

Bank B offers a rate of 6.9 % compounded daily. Which bank would you choose? Is 

it possible to solve this problem without information on the investment amount and 

time? 
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Answers to Exercises 

Answers to Exercises 
 

Session 1 
 
1.1.   a)  System has unique solution ( )5, 2, 1− −  

b)  System has unique solution ( )2, 1, 3− − . 

c)  System is dependent. Possible parametric form: 
1

, 2 ,
2

x t y t z t= = − = . 

Particular solutions for 0t = : 
1

0, , 0
2

 
 
 

. 

d) System has unique solution ( )0, 2, 1−  

e) System is inconsistent: no solutions. 

1.2.    a)  System has unique solution ( )4, 2, 3−  

b)  System has unique solution ( )3, 4, 2− − . 

c) System is inconsistent: no solutions. 

d) System has unique solution ( )1, 0, 2  

e) System is dependent. Possible parametric form: 1 , , 1x t y t z t= − = = + . 

Particular solutions for 0t = : ( )1, 0, 1 . 

 

Session 1A 

1A.1.  
64 52

,
17 17

 
 
 

              1A.2.  
55 17

,
23 23

 
− 

 
             1A.3.  22D =                 1A.4.  6D = −   

1A.5.  
35 37 9

, ,
22 22 22

 
− 

 
    1A.6.  

11 17 29
, ,

6 3 6

 
 
 

 

Session 2  

2.1.  a)  
23 14 0; 3, 1, 14x x a b c+ − = = = = −  

b)  
216 24 3 0; 16, 24, 3x x a b c− + = = = − =  

2.2.   a)  
28 2 3 0; 8, 2, 3x x a b c− − = = = − = −  

b)  
225 20 1 0; 25, 20, 1x x a b c+ + = = = =  

2.3.  a)  
7

, 2
3

 
− 
 

     b)  
5

6

 
 
 

   2.4.  a)  
3 1

,
4 2

 
− 

 
     b)  

4

7

 
− 
 

 

2.5.  a)  
5

0,
3

 
− 

 
      b)  { 4}     c)  { 4, 3}−     d)  { 5}−           e)  {4, 5}−  
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Answers to Exercises 

Session 2 (continued) 

2.6.   a)  
7

0,
6

 
 
 

      b)  { 3}           c)  { 3, 5}−     d)  { 6}−           e)  {6, 4}−  

2.7.  a)  
3 1

,
4 2

 
− 

 
   b)  

3
, 3

5

 
− 

 
   c)  

1 2
,

3 3

 
 
 

 

2.8. a)  
1 5

,
3 2

 
− 

 
    b)  

4
, 1

7

 
− 

 
    c)  

1 2
,

4 3

 
− 
 

 

Session 3 
 

3.1.   
42.5 10  3.2.   

42.9 10  3.3.   
42.56 10−  3.4.   

51.4 10−  

 

3.5.   0.00004  3.6.   0.0875   3.7.   3,475,000  3.8.   1,236 

 

3.9.  a)  
33.47 10− ,    b)  

22.5 10   3.10.  a)  
54.38 10− ,  b)  

43.6 10  

 

3.11. a)  2,  b)  1,  c)  1/16,  d)  – 1/16,  e)  1/16 

 

3.12. a)  3,  b)  1,  c)  1/25,  d)  – 1/25,  e)  1/25 

 

3.13. a) 
21/ a ,       b) 1/𝑐9,  c) 1/ a6

,  d) n2 /m2
 

 

3.14. a) 
31/ c ,        b) 

61/ n ,  c) 
121/ d ,  d) 

3 3/b a−  

 

3.15. a) 
4p ,           b) 

121/ p , c) 
12p ,    d) 

41/ p ,  e) 
41/ p ,  f) 

12p ,    g) 
121/ p ,  h) 

4p  

 

3.16. a) 
6r ,            b) 

12r ,      c) 
121/ r , d) 

61/ r ,  e) 
61/ r ,   f) 

121/ r ,  g) 
12r ,     h) 

6r  

 

3.17.  /b d a cy x+ +
        3.18.  /w y x zp q+ +

        3.19.  /mnb a  3.20.  
2 3/xyu v  

 

3.21.  ( ) ( )30 1636 / 25s r     3.22.  ( ) ( )60 36125 / 8x y−      3.23.  ( ) ( )18 218 / 27p q−  

 
3.24.  ( ) ( )20 89 / 25m n  

Session 4 
 

4.1.   
6 4

5

y −
 4.2.   

12 8

7

z −
 4.3.   

( )

( )

3 5

2 3

z z

z

+

−
 4.4.   

( )2 2 3

3 5

y y

y

+

−
 

4.5.   
( )

( )

2 5

3 4

x

x

+

+
 4.6.   

( )

( )

3 2

4 1

x

x

−

−
 4.7.   

( )2 4

7

x

x

+
 4.8.   

( )3 3

4

x

x

+
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Session 4 (continued) 
 

4.9.   2 4.10.  2 4.11.  
10 15

36

m +
 4.12.  

7 50

60

n +
 

    

4.13.  
14 15

24

x y

xy

+
 4.14.  

9 28

24

x y

xy

+
 4.15.  

2

2

35 50 8

30

x x

x

− +
 4.16.  

2

2

9 28 10

24

x x

x

− +
 

    

4.17.  
( )( )

23

4 7 7 4

x

x x

+

− −
 4.18.  

( )( )
3 10

3 4 4 3

x

x x

+

− −
 

4.19.   

             
2

4

a

a −
 

4.20. 

               
2

5

b

b −
 

    

4.21.  
3

2

x

x −
 4.22.  

2

4

x

x −
 4.23.  

( )
3

5 5

x

x

+

−
 4.24.  

( )
5

4 4

x

x

+

−
 

    

4.25.  
( )( )

2

3 5x x+ +
 4.26.  

( )( )
1

4 5x x+ +
 4.27.  

( )( )
13

4 2b b
−

+ −
 4.28.  

( )( )
25

3 5c c
−

− +
 

4.29.  
2

4

9

d

c
 4.30.  

3

15n

m
 4.31.  

3 2

4 5

x

x

+

−
 4.32.  

2 3

5 4

x

x

−

+
 

4.33.  
14

3

x
 4.34.  

15

4

x
 4.35.  

7

24
−  4.36.  

41

2
 

4.37.  
2

4 3

6 2

x xy

y x

+

−
 4.38.  2

6 5

4 3

xy y

y x

−

+
 

 
4.39.   – 3 

 
4.40.   – 4 

    

4.41.  
4 19

6 13

k

k

−

−
 4.42.  

5 12

7 34

m

m

−

−
 4.43.  

1

4

x

x

−

+
 4.44.  

1

2

x

x

−

+
 

 

𝟒. 𝟒𝟓.  
5𝑥 + 8

5𝑥 − 8
                     𝟒. 𝟒𝟔.  

7𝑥 + 6

7𝑥 − 4
          𝟒. 𝟒𝟕.

(−𝑎 − 𝑏)𝑥 − 𝑎𝑐

(𝑒 − 𝑑)𝑥 + 𝑐𝑒
     𝟒. 𝟒𝟖.  

(−𝑎 + 𝑐)𝑥 − 𝑏𝑐

(−𝑑 − 𝑒)𝑥 + 𝑏𝑑
 

 

Session 5 
 

5.1.   9 / 7x =  5.2.   5x =  5.3.   4 / 9x =  5.4.   6 / 5x = −  5.5.   17 / 3x =  

     
5.6.   7x =  5.7.   23x =  5.8.   17x =  5.9.   6 / 5x =  5.10.  25 / 2x =  

     
5.11.  2 / 9x =  5.12.  1/ 6x =  5.13. 1/12x = −  5.14  11/ 5x = −  5.15.  11x = −  

     
5.16.  6x = −  5.17. 113/11m = −  5.18.  15m = −  5.19.  3x =  5.20.  11x = −  

5.25.  2  gallons 5.26.  4  gallons 5.27.  36%  5.28.  14%   
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Answers to Exercises 

Session 6 
 

6.1.   a)  4        b)  3        c)  25        d)  4        e)  1/2        f)  125        g)  1/9        h)  2 

6.2.   a)  9        b)  4        c)  36        d)  3        e)  1/6        f)  4            g)  1/8        h)  3 

6.3.   
1

a
 6.4.   b  6.5.   5 2  6.6.   3 6  

    
 6.7.   4 2  6.8.   6 2  6.9.   a)  

4x  

b)  
3x x  

6.10.  a)  
3x  

          b)  
2x x  

    
6.11.  a)  

186y  

  b)  
43y y  

6.12.  a)  
247z z  

          b)  
328z  

6.13.  
5 2 815 3x y z y  6.14.  

7 4 625 3x y z yz  

6.15.  ( ) ( )16 9/b a  6.16.  ( ) ( )9 25/a b    

 

Session 7 
 

7.1. a)  7    b) 2018    c)  47 2      7.2. a)  5   b) 2019   c)  26 3       7.3.  7 6      7.4.  6 15  

7.5. a)  
4 43 5p q q     b)  

5576 3a b b  7.6. a)  
5 45 3m n m    b)  

6 3294 2u v v  

7.7. a)  11 6    b)  2 7−  7.8. a) 9 5  b)  3 3−              7.9. 8 6 2 7m n k+  

7.10. 12 3 2 6p q r+          7.11. a)  7 2    b)  7 3     c)  10 6 10 5−  

7.12.  a)  5 3    b)  2 5    c)  28 7 40 3−    7.13. 2 5 5 2+     7.14. 2 3 3 2+  

7.15.  315      7.16.  24     7.17. 4 8 30+           7.18.  26 2 14− −     7.19.  42      7.20.   67 

7.21.  117      7.22.  189    7.23.  83 12 35+      7.24.  72 48 2+       7.25.  83 12 35−  

7.26.  72 48 2−  

Session 8 
 

8.1.   
5 6

6
 8.2.   

4 3

3
 8.3.   

15

5
 8.4.  

42

7
 

    

8.5.   
5

15
 8.6.   

3

15
 8.7.   

4 3

15
 8.8.  

2 5

15
 

 

8.9.   
𝟓−√𝟑

𝟒
 8.10.   

3 5

2

−
 

 

8.11.   2 3+  8.12. 
5 6

19

−
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Session 8 (continued) 

8.13. 
6 3

3

−
 8.14. 6 5+  8.15.   

4 3 8 6

16 9

u uv u v

u v

+ + +

−
 

8.16.  
2 3 5

4 25

a ab b

a b

− −

−
 

 

8.17.  7x =  

 

8.18.  13x =  

 

8.19.  8x =  

    
8.20.   5x =  8.21.  No solutions 8.22.  No solutions 8.23.  4x =  

    
8.24.  3x =  8.25.  No solutions 8.26.  No solutions  

   8.27.  a)  x = 2    b)  2x = −  and 1x = −      8.28.  a)  3x = −  and 1x = −     b)  1x =  

 

   8.29.  a)  x = 1 and x = 3           b)  x = 5        8.30.  a)  x = 2 and x = 4   b)  x = 7 

 

 

Session 9 
 

9.1.  a)  5i  

  b)  4 2i  

9.2.  a)  4i  

        b)  3 3i  

9.3.  a)  9 2i−  

        b)  4 8i− −  

9.4.  a)  12 5i−  

        b)  4 5i+  

9.5.   a)  6 12i−       b)  8 20i− +       c)  7 22i− +       d)  12 54i− −       e)  45 7i−         f)  13  

9.6.   a)  12 20i+     b)  21 42i+       c)  4 38i+          d)  17 57i−          e)  34 38i−       f)  20  

9.7.   a)  
8 2

5 5
i+       b)  

3

2
i−       c)  

3 9

2 4
i+       d) 

38 9

61 61
i− −      e)  

2 9

5 5
i−         f)  

5 12

13 13
i−  

9.8.  a)  
7

3
2

i− +      b)  
2

3
i      c)  

1 2

2 3
i−       d) 

38 9

25 25
i−      e)  

2 23

13 13
i− −     f)  

45 28

53 53
i− −  

9.9.   a)  1−             b)  i−         c)  1        d)  i  

9.10. a)  i−              b)  1          c)  i                d)  1−  

9.11.  a)  
3 6

4

  
 
  

       b)   7i         c)  
2 3

3 6
i

  
−  
  

 

9.12.  a)  
2 3

5

 −  
 
  

     b)   3i         c)  
5 6

7 7
i
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Session 10 
 

10.1.  a)  ( )
22 8 16 4x x x+ + = +         b)  

2

2 9 3
3

4 2
x x x

 
− + = − 

 
 

          c)  

2

2 1 1

4 2
x x x

 
+ + = + 

 
          d)  

2

2 5 25 5

4 64 8
x x x

 
− + = − 

 
 

10.2.  a)  ( )
22 6 9 3x x x+ + = +           b)  

2

2 81 9
9

4 2
x x x

 
− + = − 

 
 

          c)  

2

2 1 1

4 2
x x x

 
− + = − 

 
         d)  

2

2 7 49 7

3 36 6
x x x

 
+ + = + 

 
 

10.3.  a)   1, 5−           b)   3, 2− −       c)  
7 17

2

  
 
  

     d)  {−4 ± √5𝑖}     e)  
3

3,
2

 
− 
 

 

10.4.  a)   4, 2−           b)   2, 7            c)  
3 29

2

 −  
 
  

   d)  {5 ± √3𝑖}        e)  
1

2,
3

 
− − 
 

 

10.5.  a)  No real roots b)  Two roots  c) One root 

10.6.  a)  One root  b)  No real roots c) Two roots 

10.7.  a)  
4 21

5

  
 
  

    b)  
3

4

 
− 
 

           c)  
7 31

8 8
i

  
 

  
        d)  

4 3
,

3 2

 
 
 

 

10.8.  a)  
3 30

7

  
 
  

    b)  
7

3

 
 
 

              c)  
5 47

12 12
i

  
−  
  

   d)  
5 3

,
6 2

 
 
 

 

Session 11 
 

11.1.  a)  ( )4, 5− − , Up       b)  ( )2, 6 , Down      c)  ( )5, 4− , Up 

11.2.  a)  ( )3, 7 , Down       b)  ( )7, 3− − , Up      c)  ( )1, 8− , Down 

11.3.  a)  squared form: ( )
2

3 2 3y x= + − ,   standard form: 
23 12 9y x x= + +   

b) squared form: ( )
2

3 2 1y x= + + ,   standard form: 
23 12 13y x x= + +  

11.4.  a)  squared form: ( )
2

3 2 1y x= − + ,    standard form: 
23 12 13y x x= − +   

b) squared form: ( )
2

3 2 3y x= − − ,   standard form: 
23 12 9y x x= − +  

11.5.  a)  squared form: ( )
2

2 3 2y x= − − + , standard form: 
22 12 16y x x= − + −   

222



 

Answers to Exercises 

Session 11 (continued) 

b) squared form: ( )
2

2 3 1y x= − − − , standard form: 
22 12 19y x x= − + −  

11.6.  a)  squared form: ( )
2

2 3 1y x= − + − , standard form: 
22 12 19y x x= − − −   

b) squared form: ( )
2

2 3 2y x= − + + , standard form: 
22 12 16y x x= − − −  

11.7.  a)  vertex: ( )1, 4− , y- intercepts: ( )0, 3− , x-intercepts: ( )1, 0−  and ( )3, 0   

b) vertex: ( )2, 9− , y- intercepts: ( )0, 5 ,   x-intercepts: ( )5, 0−  and ( )1, 0  

11.8.  a)  vertex: ( )1, 9− , y- intercepts: ( )0, 8 ,     x-intercepts: ( )4, 0−  and ( )2, 0  

b) vertex: ( )3, 4− , y- intercepts: ( )0, 5 ,   x-intercepts: ( )1, 0  and ( )5, 0  

Session 12 

12.1.   2 10         12.2.  5 2  

12.3.  Acute triangle. Biggest angle is C, smallest angle is A 

12.4.  Right triangle. Biggest angle is A, smallest angle is C 

12.5.  ( )1, 5− −    12.6.  ( )3, 1    12.7.  ( )1, 3     12.8.  ( )7, 2− −  

12.9.   a)  Center ( )2, 4− − ,  radius = 6    b)  Center ( )5, 2− ,    radius = 2 5  

12.10. a)  Center ( )6, 3 ,    radius = 7        b)  Center ( )7, 8− , radius = 5 2  

12.11. ( ) ( )
2 2 23 4 13x y+ + + =      12.12.  ( ) ( )

2 2 212 10 17x y− + − =  

12.13. a)  Center ( )2, 1− ,    radius = 4, points: ( ) ( ) ( ) ( )2, 5 , 2, 3 , 6, 1 , 2, 1− − − −  

           b)  Center ( )5, 4 ,      radius = 3, points: ( ) ( ) ( ) ( )5, 1 , 5, 7 , 2, 4 , 8, 4  

12.14. a)  Center ( )4, 1− ,    radius = 3, points: ( ) ( ) ( ) ( )4, 2 , 4, 4 , 1, 1 , 7, 1− − −  

           b)  Center ( )3, 2− − , radius = 5, points: ( ) ( ) ( ) ( )3, 7 , 3, 3 , 8, 2 , 2, 2− − − − − −  

Session 13 

13.1.  a)  ( ) ( ) 7, 22 , 1, 2− −                      13.2.  a)  ( ) ( ) 1, 6 , 13, 50− −  

          b)  ( ) 8, 3− −                                               b)  ( ) 70, 6  

          c)  ( ) 9, 3−                                                  c)  ( ) 4, 2  

          d)  ( ) ( ) 19, 11 , 1, 1− − −                            d)  ( ) ( ) 34, 12 , 2, 0−  

          e)  ( ) ( ) ( ) ( ) 3, 4 , 3, 4 , 3, 4 , 3, 4− − − −     e)  ( ) ( ) ( ) ( ) 2, 4 , 2, 4 , 2, 4 , 2, 4− − − −  
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Session 13 (continued) 

 13.1.  f)  ( ) ( ) ( ) ( ) 1, 3 , 1, 3 , 3, 1 , 3, 1− − − −  

 13.2.  f)  ( ) ( ) ( ) ( ) 2, 5 , 2, 5 , 2, 5 , 2, 5− − − −  

13.3.  Length = 4 m, width = 3 m                  13.4.  Length = 6 yd, width = 5 yd 

 

Session 14 

14.1.  a)  50 360 , 0, 1, 2,...n n+ =        b)  70 360 , 0, 1, 2,...n n− + =    

               410 , 770 , 310− , 670−              290 , 650 , 430− , 790−  

14.2.  a)  27 360 , 0, 1, 2,...n n+ =       b)  35 360 , 0, 1, 2,...n n− + =    

   387 , 747 , 333− , 693−            325 , 685 , 395− , 755−  

14.3.  a)  6 3, 12b c= =    b)  3, 2 3a c= =        c)  4, 4 3a b= =  

14.4.  a)  8 3, 16b c= =     b)  3 3, 6 3a c= =      c)  2, 2 3a b= =  

14.5.  a)  4, 4 2b c= =    b)  8, 8 2a c= =           c)  9 2 / 2a b= =  

14.6.  a)  3, 3 2b c= =    b)  6, 6 2a c= =           c)  7 2 / 2a b= =  

14.7.  Side opposite to 30  is / 2c , side opposite to 60  is 3 / 2c  

14.8.  Side opposite to 30  is 3 / 3b , hypotenuse is 2 3 / 3b  

14.9. Both sides are 2 / 2c  

Session 15 

15.1.  
3 4 3 4 3 4

sin , cos , tan , sin , cos , tan
5 5 4 5 5 3

A A A B B B= = = = = = . 

15.2.  
12 5 12 5 12 5

sin , cos , tan , sin , cos , tan
13 13 5 13 13 12

A A A B B B= = = = = = . 

𝟏𝟓. 𝟑. 𝐚) cos 𝜃 =
12

3
,  tan 𝜃 =

5

12
,   csc 𝜃 =

13

5
,   sec 𝜃 =

3

12
,  cot 𝜃 =

12

5
. 

           𝐛) sin 𝜃 =
√13

7
, tan 𝜃 =

√13

6
, sec 𝜃 =

7

6
, csc 𝜃 =

7√13

13
, cot 𝜃 =

6√13

13
. 

           𝐜) sin 𝜃 =
4√41

41
, cos 𝜃 =

5√41

41
, cot 𝜃 =  

4

5
, csc 𝜃 =

√41

4
, sec 𝜃 =

√41

5
. 
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Session 15 (continued) 

𝟏𝟓. 𝟒.  𝐚) cos 𝜃 =
4

5
,  tan 𝜃 =

3

4
,   csc 𝜃 =

5

3
,   sec 𝜃 =

5

4
,  cot 𝜃 =

4

3
. 

            𝐛) sin 𝜃 =
√11

6
, tan 𝜃 =

√11

5
, sec 𝜃 =

6

5
, csc 𝜃 =

6√11

11
, cot 𝜃 =

5√11

11
. 

            𝐜) sin 𝜃 =
3√13

13
, cos 𝜃 =

2√13

13
, cot 𝜃 =  

2

3
, csc 𝜃 =

√13

3
, sec 𝜃 =

√13

2
. 

15.5.  C = 580    15.6.  A = 370      15.7.  B = 670          15.8.  C = 540 

          AB = 43.209 AB = 58.850   AB = 48.886         AC = 66.748 

          BC = 50.951   BC = 35.417    BC = 19.101         BC = 39.233 

15.9.  A = 270    15.10. C = 480     15.11. A = 320          15.12. A = 660 

          AB = 16.038   AB = 17.092     B = 580          B = 240    

          BC = 8.172   AC = 15.390     AB = 9.434          AB = 9.849 

15.13. A = 510      15.14. B = 330  

           B = 390    C = 570    

           AC = 5.657   AB = 9.220     

15.15.  
2 3 2 3

sec30 , csc30 2, sec45 csc45 2, sec60 2, csc60
3 3

= = = = = = . 

15.16.  
3

cot 30 3, cot 45 1, cot 60
3

= = = .              15.17.  B             15.18.  A    

15.19.  A                15.20.  B                  15.21.  29.1 ft         15.22.  61 ft        15.23.  11.5 ft 

15.24.  2.5 m         15.25.  167.1 ft         15.26.  83.1 ft         15.27.  3.1         15.28.  29.1  

15.29.  46.1         15.30. 21.1              15.31. 63.9            15.32. 53.1       15. 33. 20.3 m 

15.34. 600  

Session 16 

16.1.  a)  sin−        b)  sin                16.2.  a)  cos−         b)  cos−  

16.3.  a)  50               b)  40                             c)  70                d)  85                     e)  50  

16.4.  a)  20              b)  10                              c)  50                 d)  80                     e)  30  

16.5.  a)  220            b)  110                            c)  310              d)  20  

16.6.  a)  320            b)  70                              c)  130              d)  200  

16.7.  a)  III, 
1

30 ,
2

−             b)  IV, 
1

60 ,
2

           c)  II, 45 , 1−  

16.8.  a)  IV, 
2

45 ,
2

−         b)  II, 
3

30 ,
2

−        c)  III, 60 , 3  
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Session 16 (continued) 

16.9. 

a)  IV,  
5 2 5 3 3 5 5

cos , tan , csc , sec , cot
3 5 2 5 2

    = = − = − = = −  

b)  II,   
21 21 5 21 5 2 21

sin , tan , csc , sec , cot
5 2 21 2 21

    = = − = = − = −  

c)  III,  
3 34 5 34 34 34 5

sin , cos , csc , sec , cot
34 34 3 5 3

    = − = − = − = − =  

16.10. 

a)  II,   
33 4 33 7 7 33 33

cos , tan , csc , sec , cot
7 33 4 33 4

    = − = − = = − = −  

b)  III,  
39 39 8 39 8 5 39

sin , tan , csc , sec , cot
8 5 39 5 39

    = − = = − = − =  

c)  IV,  
7 65 4 65 65 65 4

sin , cos , csc , sec , cot
65 65 7 4 7

    = − = = − = = −  

 

16.11. 

a)  
2 5 5 5 1

sin , cos , tan 2, csc , sec 5, cot
5 5 2 2

     = − = − = = − = − =  

b)  
5 41 4 41 5 41 41 4

sin , cos , tan , csc , sec , cot
41 41 4 5 4 5

     = − = = − = − = = −  

c)  
7 58 3 58 7 58 58 3

sin , cos , tan , csc , sec , cot
58 58 3 7 3 7

     = = − = − = = − = −  

16.12. 

a)  
5 34 3 34 5 34 34 3

sin , cos , tan , csc , sec , cot
34 34 3 5 3 5

     = = − = − = = − = −  

b)  
6 61 5 61 6 61 61 5

sin , cos , tan , csc , sec , cot
61 61 5 6 5 6

     = = − = − = = − = −  

c)  
7 65 4 65 7 65 65 4

sin , cos , tan , csc , sec , cot
65 65 4 7 4 7

     = − = − = = − = − =  

 

Session 17 

17.1.  105.3, 129.1, 20p q R= = =   17.2.  10.8, 21.3, 85q r P= = =  

17.3.  21.2, 25.4 , 114.6l K L= = =   17.4.  36.4, 77.5 , 32.5k K M= = =  
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Session 17 (continued) 

17.5.  9.1 m 17.6.  21.9 m 17.7.  AB = 33 m, BC = 26.9 m 

17.8.  11.1 ft and 12.0 ft. 17.9.  39.9  17.10.  38.0° 

17.11. 98.6  17.12.  112.3 17.13.  11.2 m 

17.14. 32.5 m 17.23.  3.8 mi 17.24. 
( )

sin sin

sin

d A B

A B+

17.25. 6.3 mi 17.26.  
sin sin

sin

d A B

A B−
17.27. 1.3 m and 2.2 m 

Session 18 

18.1.  28.2, 40.1 , 74.9p Q R= = =    18.2.  96.3, 16.2 , 33.8q P R= = =  

18.3.  28.9 , 46.6 , 104.5K L M= = =   18.4.  133.4 , 29.0 , 17.6K L M= = =

18.5.  Yes  18.6.  301.4 ft    18.7.  41.8   18.8.  29.3  

18.9.  14   18.10.  57    18.11.  11.5   18.12. 280 m 

Session 19 

19.1.  a)  74.5 ,  b) 34.4− 19.2.  a)  137.5 ,   b) 45.8−

19.3.  a)  40       b) 54−  19.4.  a)  48 ,        b) 216−

19.5.  a)  2.44,   b) – 1.48 19.6.  a)  1.36,        b) – 4.14

19.7.  a)  
2

3


,   b) 

5

6


− 19.8.  a)  

11

6


 ,     b) 

5

4


−

19.9.   a)  
4 3 4 1 4

sin , cos , tan 3
3 2 3 2 3

       
= − = − =     

     

b)  
2 2

sin , cos , tan 1
4 2 4 2 4

       
− = − − = − = −     
     

c)  
5 1 5 3 5 3

sin , cos , tan
6 2 6 2 6 3

       
= = − = −     

     

19.10. a)  
1 3 3

sin , cos , tan
6 2 6 2 6 3

       
− = − − = − = −     
     

b)  
2 3 2 1 2

sin , cos , tan 3
3 2 3 2 3

       
= = − = −     
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Session 19 (continued) 

          c)  
3 2 3 2 3

sin , cos , tan 1
4 2 4 2 4

       
− = − − = − − =     
     

19.11. a)  9.7 ft     b)  1.8 cm        19.12. a)  0.5 m     b)  5.0 in 19.13. 
5

, ,
4 3 12

  

19.14. 16 cabs, arc   3.14 m       19.15. 180 m/min    19.16. 3 sec 

Session 20 

20.1.  a)  
3

,
4 4

 
,   b) 

4 5
,

3 3

 
,        c) ∅ (No solutions)

20.2.  a)  
2

,
3 3

 
,   b) 

7 11
,

6 6

 
,     c) ∅ (No solutions)

20.3.  a)  0, 𝜋,
5𝜋

6
,

7𝜋

6
,  b)  

𝜋

6
,

5𝜋

6
,

3𝜋

2
    20.4.  a)  0, 𝜋,

𝜋

6
,

5𝜋

6
,  b)  

7𝜋

6
,

11𝜋

6
,

𝜋

2

20.5.  a)  0.85, 2.29 b)  3.48, 5.94 20.6. a)  0.64, 2.50      b) 3.75, 5.67

Session 21 

21.1.  a)  
7

,
4 4

 
,   b)

5 7
,

6 6

 
c) ∅   21.2.  a)  

𝜋

6
,

11𝜋

6
  b) 

3 5
,

4 4

 
,    c)  ∅ 

21.3.  a)  
7

,
6 6

 
,  b)

2 5
,

3 3

 
  21.4.  a)  

𝜋

3
,

4𝜋

3
  b)  

5𝜋

3
,

11𝜋

3

21.5.  a) 
𝜋

2
,

3𝜋

2
,

𝜋

3
,

5𝜋

3
b) 0,

2𝜋

3
,

4𝜋

3
c) 0, 𝜋,

𝜋

4
,

5𝜋

4

21.6.  a)  
𝜋

2
,

3𝜋

2
,

2𝜋

3
,

4𝜋

3
b) 𝜋,

𝜋

3
,

5𝜋

3
c) 0, 𝜋,

3𝜋

4
,

7𝜋

4

21.7. a)  0.93, 5.35 b) 2.18, 4.10 21.8.   a)  0.72, 5.56    b)  1.91, 4.37 

21.9. a)  1.11, 4.25 b) 2.68, 5.82 21.10. a)  1.33, 4.47    b)  2.55, 5.70 

Session 22 

22.13.   
3

0, ,
2 2

 
 22.14.  0, ,

2


         22.15.  

3
0, ,

2




22.16.  
3

, ,
2 2

 
  22.17.  

3 5 7
, , ,

4 4 4 4

   
       22.18.  

3 5 7
, , ,

4 4 4 4

   

22.19.  
7 11

,
6 6

 
 22.20.  

2 4
,

3 3

 
       22.21.  , 0.841, 5.442
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Session 22 (continued) 

22.22.  , 4.069, 5.356
2


 22.23.  

7
0, , ,

6 6

 
        22.24.  

4 3
, , ,

3 2 3 2

   

22.25.  ,
2


   22.26. 

3
0,

2



Session 23 

23.1.  a)  
42 16=       b)  

4 1
2

16

− =     23.2.  a)  
34 64=         b)  

3 1
4

64

− =

23.3.  a)  2log 8 3=       b)  2

1
log 3

8
= −     23.4.  a)  3log 81 4=      b)  3

1
log 4

81
= −

23.5.  a)  4       b) 3 c) – 2 d) – 6 e) – 2        f)  
1

5
       g)  

9

4

23.6.  a)  2 b) 4 c) – 3 d) – 3 e) – 2         f)  
1

4
      g)  

11

5

23.7.  a)  3 b)  
2

3
− c)  – 3        23.8.  a)  4 b)  

1

2
c) – 2

23.9.  a)  7     b) 4          23.10.  a)  4      b)  3        23.11.  1       23.12.  3      23.13.  3u + 2v 

23.14.  4u + 5v       23.15.  7u – 6v        23.16.  3v – 2u  

𝟐𝟑. 𝟏𝟕.  𝐚) log (
𝑥3 √𝑧23

𝑦2
)   𝐛) log (

𝑥5𝑦6

√𝑧34 )   𝟐𝟑. 𝟏𝟖.  𝐚) log (
𝑥4 √𝑧45

𝑦3
)   𝐛) log (

𝑥6𝑦7

√𝑧56 )

23.19. a)  1.226     b)  – 0.429    c)    – 0.348       23.20.   a)  1.292     b)  0.881     c) 1.931 

23.21.  1.069         23.22.  0.936 

Session 24 

24.1.  ,f B g A       24.2.  ,f A g B        24.3.  ,f A g B   

24.4.  ,f B g A       24.5.  ,f B g A        24.6.  ,f A g B   

24.7.  ,f A g B       24.8.  ,f B g A        24.9.  a)  3log ( )x b)  
2

3

x

 
 
 

 

24.10. a)  3

4

log ( )x b) 5x
24.11. a)  ( )3/ 2,−  b)  ( ), 3 / 2−

24.12. a)  ( )5 / 4,−      b)  ( ), 5 / 4−
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Session 25 

25.1.  I = $7.29, A = $ 707.29 25.2.  I = $14.00, A = $ 614.00 

25.3.  A = $1,540.03, I = $ 340.03 25.4.  A = $2,704.38, I = $ 304.38 

25.5.  A = $1,540.83, I = $ 340.83 25.6.  A = $2,705.99, I = $ 305.99 

25.7.  17.4 years 25.8.  9.9 years 

29.9.  Bank B. Yes, information about investment amount and time is not needed. 
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