A Framework for Unconditionally Secure Public-Key Encryption (with Possible Decryption Errors)

M. Bessonov, D. Grigoriev, V. Shpilrain
NYCCT

May 13, 2018

Unconditionally secure public-key encryption

- Unconditionally secure (i.e., secure without any computational assumptions) public-key encryption is impossible if the legitimate receiver decrypts correctly with probability exactly 1.
- What if this probability is less than 1 ?
- More precisely, what if the sender transmits a single encrypted bit and the legitimate receiver decrypts it correctly with probability P?

$$
1 / 2<P<1
$$

The sender advantage

If decryption errors are possible

- sender has an advantage over the eavesdropper
- sender knows exactly what the transmitted secret bit is.

Thus, we make the sender guess the receiver's decryption key to gain an advantage.

New scheme

Existing schemes: adversary competes with the receiver
In our scheme: adversary competes with the sender
Goal of the sender: guess receiver's decryption key to decrypt correctly
Goal of the adversary (eavesdropper): guess sender's secret bit correctly.

The scheme

Alice transmits a bit a to Bob
Bob has a private decryption key b
Eve is a computationally unbounded adversary

Proposition

In our scheme, $P_{A}=$ probability that Alice is successful $>1 / 2$
(i.e., to guess Bob's private decryption key b)
$P_{E}=$ probability that Eve is successful $=1 / 2$
(i.e., to guess Alice's bit a)

The scheme

(1) Bob selects an integer b from the interval $[0, n-1]$ and performs a random walk with $h(n)$ steps, ending at B. Bob publishes B.
(2) Step 2 is repeated by Alice m times. Alice selects an integer a from the interval $[B, n-1]$ and performs a random walk. She selects with probability $1 / 2$ between $f(n)$ steps and $g(n)$ steps, and her walk ends at A. She adds or subtracts $1 / 2$ to/from A for her final endpoint.

The scheme

(3) Alice groups the m random walks into two groups and selects a group with equal probability:
Group 1: those with $A<B$
Group 2: those with $A>B$.
(1) From the chosen group in step 2, with equal probability, Alice selects between random walks with $f(n)$ steps and those with $g(n)$ steps. (If empty, go back to Step 2). Alice selects one random walk uniformly at random. Let a_{0} be the starting point.

The scheme

(0) If the random walk selected is from group
$f(n), A<B$ or $g(n), A>B$, choose $x<a_{0}$
$f(n), A>B$ or $g(n), A<B$, choose $x>a_{0}$
(0) Alice assumes that b is in the interval she selected and encrypts her bit accordingly
(i.e., labels her selected interval with her secret bit c and the other interval with $1-c$).
She sends the a_{0} and the above interval labeling to Bob.
(1) Bob recovers the bit corresponding to the label of the interval where his b is.

The scheme

How this works

Suppose $f(n)$ is large and $g(n)$ is small.

$$
\begin{equation*}
P(b<a \mid A<B<a) \tag{1}
\end{equation*}
$$

is higher if Alice has $f(n)$ steps

With high probability, Alice's guess of b is correct if she chooses a walk with $f(n)$ steps

But Alice is also trying to confuse Eve, so she may choose a walk with $g(n)$ steps

Still, it is possible to have $P_{A}>1 / 2$, yet $P_{E}=1 / 2$

Experimental results

With $f(n)=100,000$ steps for Alice, success rate in a single run of the protocol was 76%.

With $g(n)=2000$ steps for Alice, success rate in a single run of the protocol was 34%.

Thus, $P_{A}=\frac{1}{2}(0.76+0.34)=0.55$.
At the same time, $P_{E}=0.5$.

