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Machine learning techniques have been used successfully in Astrophysics for a variety of
problems, from recognizing galaxy morphologies to identifying outliers. One significant limitation
of supervised learning techniques is that they require a training set for which the ground truth is
known, which is not readily available because most astrophysical processes happen on
unobservable timescales. One possible approach to this problem is to train machine learning
models on state-of-the-art cosmological simulations; however, it is unclear how models will
perform once applied to real data. We are carrying out an innovative study with the goal to
model the generalization error of a machine learning algorithm as a function of an appropriate
measure of distance between the source domain and the application domain. Our preliminary
results have shown great promise when applied to the predictions of stellar masses. Our goal is
to extend and improve our framework, and ultimately obtain a reliable estimate of how a model
trained on simulations might behave on data.
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Yes, we can:

Inferring galaxy properties from cosmological simulations
using machine learning

Machine learning techniques have been found to be increasingly useful in a variety of data-
intensive sciences, and were particularly well received in Astrophysics, because of the predomi-
nance of large data sets and of the need to model complex physical processes without the possibil-
ity of laboratory testing. As a result, they have been successfully used in many research problems,
from recognizing galaxy morphologies, to identifying gravitational lenses, to evaluating distances
of astrophysical sources, to enhancing the effective volume of surveys (e.g., [1]). In many cases,
science questions can be set up as a supervised learning problem, in which the goal is for the al-
gorithm to model an input/output relationship (for example, to infer a certain physical property
on the basis of other observed ones) after being shown a set of examples, known as a learning set,
for which both the observed quantities and the desired one are known. A supervised learning
algorithm is only as good as its learning set: only if the examples shown are both representative
and complete of the application domain, it is possible to obtain correct inference.

In the problem we consider here, we aim to determine some physical properties of distant
galaxies (for example, stellar masses or stellar ages) from their observed spectra (charts of their
luminosity versus wavelength of light emission), using machine learning methods. We know that
different astrophysical processes leave their imprint in various regions of the spectra with charac-
teristic signatures, so we are confident that the information is present in the data.
However, identifying a learning set for
this problem (i.e., a set of galaxies whose

Survey: sdss Program: legacy Target: CALAXY ROSAT_D ROSAT_E
RA=26.65808, Dec=—1.22098, Plate=401, Fiber=125, MID=51788
2=0.04263+0.00002 Class=GALAXY AGN

No warnings.

properties are known) is very hard: the
ground truth is not available, because we
have no way of knowing the true history
of how galaxies have formed.

To circumvent the difficulty of observ-
ing astrophysical processes directly, in the
last decade there has been an enormous
community effort running large, com-
putationally expensive numerical simula-
tions of galaxy formation and evolution.
The results of the most sophisticated of
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these (e.g., the recent Illustris TN Qi re-
semble quite well the Universe that we
presently observe, confirming that such
state-of-the-art simulations are able to
capture the most important processes in
galaxy formation and evolution.

In [2], we leveraged this remarkable progress by carrying out pioneering work (funded by a PSC-
CUNY award) in determining the star formation history of galaxies by training several algorithms,
most notably a Convolutional Neural Network, on spectra obtained through the cosmological
simulations, with very promising results. We were also able to show that the results were relatively

Figure 1: An example spectrum for a galaxy in one
of our target data surveys, the Sloan Digital Sky Sur-
vey. The input features of our ML problem are the ob-
served brightness at each wavelength; the target will
be properties such as stellar mass or stellar age.

Ihttp://www.tng-project.org/
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robust to training models using one cosmological simulations and then applying it to galaxies
from a different simulation.

However, a potential weakness of these methods remained unexplored: the algorithms are
trained on the simulations, and we want to apply them to real data. How can we make sure that
our method does not break down when extended to objects that are significantly different from
those in our training set? In our most recent work [3], also funded by a PSC-CUNY award, we
started to scratch the surface of this important problem, as described in the next section. The final
goal of this project is to provide a quantitative assessment of the generalization error, i.e., the
average deviation from the true values incurred when applying the model to previously unseen
objects, of these models when applied to observed spectra from real galaxies.

Framework and Methodology

Our project is based on a very simple idea: if the simulations are realistic, the spectra of galaxies
that they produce will be similar to those of real observed galaxies. We aim to leverage the idea of
similarity in the space of observed spectra and check whether it can be translated into a measure
of similarity in the space of physical properties.

The problem setup is the following. We know that in nature, a set of physical properties for
galaxies (for example, stellar mass, star formation history, chemical enrichment history...), plus
many latent variables, will lead to the spectra that we observe; we could call this “mapping”
function f(x). We are interested in learning the “inverse” function f~'(x), which would teach us to go
from observed quantities (spectra) to the quantities that we’d like to measure (physical properties).

In simulations, a set of chosen input physical properties is transformed into a set of simulated
spectra by some known modeling function, let’s say g(x). Hopefully g(x) is a good approximation
of f(x); we can verify this because if our variables are meaningful and our modeling is correct,
then the simulated spectra generated by applying g(x) will resemble the observed spectra. In this
sense, the distance in spectral space traces the similarity between f(x) and g(x).

Now let us consider the other direction. The function ¢~!(x) can be learned by, for example,
training a machine learning model. The learned function will, of course, have its own general-
ization error, which breaks down as usual in a model-independent noise term, a bias term, and a
variance term. This will cause some difference between the “true” input physical parameters and
the inferred physical parameters.

What happens if we apply the learned function ¢~ !(x) to the observed spectra (in other words,
when we use it a proxy for the function we want, f~1(x))? Our hypotheses are the following:

1. There is an additional term in the mean square error, which comes from the fact that we learned
the “wrong” function, g~ !(x) instead of f~!(x);

2. The additional error will depend in a predictable way on an appropriate distance metric describ-
ing the similarity (or lack of it) between the observed spectra and the simulated spectra.

If we can show that 2. is true, we would be able to predict the generalization error on data. Our
scheme is described in Fig.

Our strategy for (empirically) proving our hypotheses consist of these steps:

1. Generate several sets of simulations, changing the modeling assumptions (in this case, we work
with 20 of them, i = 1 — 20). The simulations are chosen to represent the full range of models
that are compatible with current observations.
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Figure 2: Scheme of the main hypothesis we are testing: if we can learn an imperfect function g~!(x)
that gives us physical properties of galaxies (such as stellar mass, or star formation history) starting from
spectra, can we estimate how much the parameters inferred through ¢~!(x) deviate from the true ones,
based on some distance D measured in the space of spectra, which acts as a proxy for the distance between

f(x) and g(x)?

2. Find a suitable representation feature space for all the simulations sets, and optimize machine
learning models in this space;

3. Identify an appropriate measure of distance between data sets (D;; where i, j € [1, 20]);

4. Train 20 models, one per simulated set of spectra, excluding the objects who participated to the
feature selection process in step 2, to learn as many inverse modeling functions, indicated as
g1 (%), 85" (%), g (%);

5. Apply each of the learned functions to each of the simulated sets of spectra;

6. Generate and analyze 20 scatter plots, one for each simulation set 7, plotting the distance met-
ric D;; (where j = 1,...20) versus the generalization error obtained by applying the functions
971 (x), 85 (x), -85 (x) to learn the parameters of simulation i;

7. Use these 20 examples to infer a robust regression between the distance metric D; ; mentioned
above and the generalization error incurred.

8. Use the regression model to predict the generalization error on data, based on the distance be-
tween data and simulations.

Preliminary results

We have generated 20 simulations, each of which contains ~ 6,500 galaxies, with a representative
range of physical properties. The differences between the simulations arise from using varying
modeling assumptions, for example by changing stellar libraries and dust properties. The feature
set of this problem is the vector of measured brightness at each wavelength, in the range between
3,000 and 9,000 A; this matches the Sloan Digital Sky Survey data.

For this exploratory step, we have chosen to predict a simple quantity, the total mass held in
stars.At zero order, the stellar mass of a galaxy is proportional to its luminosity, and in particu-
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Figure 3: An example scatter plot of Mean Square Error versus pairwise distance, for Simulation 1. The
MSE is calculated by applying the inverse mapping function learned on each simulation, from 1 to 20, to
the data of simulation 1; each color corresponds to a different simulation. There is a clear correlation trend,
which suggest the possibility of successfully fitting a regression model. This would allow us to predict the
MSE when the model is applied to data. Plots for the other 19 simulations show similar trends. From [3].

lar, to the luminosity in the near-infrared region of the EM spectrum, where fewer confounding
effects/degeneracies with other parameters exist. Therefore, this problem is a feasibility pilot
for more complicated parameter estimation tasks. Our measure of the generalization error is the
Mean Square Error (MSE) on the stellar mass.

After an extensive exploration of domain adaption techniques, we reached the conclusion that
a similarity measure that correlates with the MSE in stellar mass need to derive from a supervised
feature selection process, as opposed to an unsupervised dimensionality reduction process.

Our preliminary results are shown for a simplistic feature selection process. We assembled
a super-data set by compiling together a random selection of 1000 objects from each of the 20
simulation sets, and fitting a Random Forest Regressor to predict Stellar Mass. We then ranked the
features according to their importance, selected the first 100, and calculated the pairwise distance
between simulated data sets as the mean Euclidean distance in this 100-dimensional space. The
objects that participated to the feature selection process are excluded from further processing, so
that the performance we report is a true generalization error, obtained for previously unseen data.

The results are quite promising. We show one example plot where the “target” set of spectra
is simulation 1, and we show the MSE (again from a Random Forest model) when we apply the
20 functions g; 1, ¢, ', ...g5, to recover the stellar mass. There is a clear trend that suggest the pos-
sibility of fitting the regression successfully. The trends seen here are similar to what we observe
in the other 19 plots, where we apply the learned inverse-modeling functions to the other 19 sets
of simulations.

Plan of Work and Anticipated Impact

Our preliminary results confirmed that this technique is promising, but are really just a first step
towards a proper assessment of the generalization error on data. Our next steps include improving
the techniques as well as extending the method to different parameter estimation tasks:
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* Feature selection processes based on ranking can be quite misleading when the features are
highly collinear, which is the case here. Therefore, we expect that by using a more sophisticated
feature selection technique, for example by clustering highly correlated features, selecting one
per cluster, and adding weights proportional to the feature importance in the calculation of
distances, we can obtain tighter correlations.

¢ The generalization error obtained from tree-based ensemble algorithms, such as that shown in
Fig. 3| can deviate from the expected behavior because of the lack of extrapolation capability of
these methods. We expect that using Convolutional Neural Networks, which are already part
of our existing framework, will lead to improved results and stability.

* Further understanding of the applicability domain of our technique will come from understand-
ing “failing” cases, such as outliers in our distance/generalization error regressions, as well as
investigating those simulations that have poorer generalization properties.

¢ After optimizing our method for the Stellar Mass estimation, we will be ready to extend it to
the problem of determining the star formation history, the dust abundance and profile, and the
chemical enrichment histories of different galaxies. Each of those will require the activation of
different features, but the core of the pipeline will remain unchanged.

* We will compare our results to those obtained through traditional (templated-based) Spectral
Energy Distribution fitting methods, such as those obtained with the software BAGPIPEﬂ
which our group is already familiar with (e.g., [4]).

¢ The final step of this analysis will consist of using the above tools to estimate the generalization
error achievable on real galaxies, for different publicly available data sets. This includes, for
example, SDSS and 3D-HSTEI

The potential impact of our work goes well beyond enabling the use cosmological simulations
to train algorithms that can be applied to data, and can in principle be adapted to any problem
where the development of a machine learning model happens on simulations. As it is customary
in our research group, we will make all code available on github.

We expect that this project will result in at least one publication in a high-impact peer re-
viewed journal, and in several conference presentations, as well as support the scholarship of an
early-career researcher (Chris Lovell). As a reference, the last two projects in collaboration with
him resulted in two publications in high-rated journals and five presentations in international con-
ferences.
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