Self-Test A

1) Domain: $\Re \setminus \{-2, 5\}$ x-intercept (0,0); y-intercept (0,0) Vertical asymptotes x = -2 and x = 5Horizontal asymptote y = 6

Note: you should indicate the asymptotes with dotted lines. I was not able to do this in the image above.

- **2)** $(-\infty, -2) \cup (5, \infty)$
- **3)** $(-\infty, 0)$
- 4) $\ln(e^{2/3}) = \frac{2}{3}$ because of the "round-trip theorem" $\log_b(b^x) = x$
- 5) $\ln x^{11}$
- 6) a) $\ln 10 = (\ln 2)(\ln 5)$ False: $\ln 10 = \ln 2 + \ln 5$
 - **b)** $\ln(e/6) = \ln e + \ln 6$ False: $\ln(e/6) = \ln e \ln 6$
 - c) $\ln(1/7) + \ln 7 = 0$ True: $\ln(1/7) + \ln 7 = \ln(\frac{7}{7}) = \ln 1 = 0$
 - d) $\ln(-e) = -1$ False: $\ln(-e)$ is undefined
- **7)** $x \approx -0.305$
- 8) $x = \frac{\ln(5)}{\ln(4) 2\ln(5)}$ (exact solution, which you could simplify to $x = \frac{\ln(5)}{\ln(0.16)}$) $x \approx -0.878$
- **9) a)** $f(t) = 100(\sqrt{15})^t \approx 100(3.873)^t$
 - **b)** 22500
 - c) about 5 months
- 10) Domain: $(3, \infty)$

Note: There is a vertical asymptote at x = 3 but the graph goes so close so quickly that it is hard to draw the asymptote and keep it separate from the graph of the function!

Self-Test B

1) Domain: $\Re \setminus \{-2, 1\}$ No x-intercept; y-intercept $(0, -\frac{5}{4})$ Vertical asymptotes x = -2 and x = 1Horizontal asymptote y = 0

Note: you should indicate the asymptotes with dotted lines. I was not able to do this in the image above

- **2)** $(-3,0] \cup (3,4]$
- **3)** $(0,2) \cup (3,\infty)$
- 4) $\frac{5}{4}$: rewrite it as $\ln\left(e^{\frac{5}{4}}\right)$ and use the "round-trip theorem" $\log_b\left(b^x\right) = x$
- 5) $\frac{x}{2}$ because of the "round-trip theorem" $b^{\log_b(x)} = x$
- 6) $\frac{3}{2}u 5v$
- 7) a) $10(\log 5) = \log 50$ False: $10(\log 5) = \log 5^{10}$
 - **b)** $\log 100 + 3 = \log 10^5$ True: $\log 100 + 3 = 2 + 3 = 5 = \log 10^5$
 - c) $\log 1 = \ln 1$ True: both equal 0
 - **d**) $\frac{\log 6}{\log 3} = \log 2$ False: $\frac{\log 6}{\log 3}$ cannot be simplified.
- 8) x = -3 or x = 6
- **9)** $x = \frac{1}{3}$
- 10) In about 33.8 years, or in other words, in the year 2045 (nearly 2046).