Self-Test A

1) Domain: $\Re \backslash\{-2,5\}$
x-intercept $(0,0) ;$ y-intercept $(0,0)$
Vertical asymptotes $x=-2$ and $x=5$
Horizontal asymptote $y=6$

Note: you should indicate the asymptotes with dotted lines. I was not able to do this in the image above.
2) $(-\infty,-2) \cup(5, \infty)$
3) $(-\infty, 0)$
4) $\ln \left(e^{2 / 3}\right)=\frac{2}{3}$ because of the "round-trip theorem" $\log _{b}\left(b^{x}\right)=x$
5) $\ln x^{11}$
6) a) $\ln 10=(\ln 2)(\ln 5)$ False: $\ln 10=\ln 2+\ln 5$
b) $\ln (e / 6)=\ln e+\ln 6$ False: $\ln (e / 6)=\ln e-\ln 6$
c) $\ln (1 / 7)+\ln 7=0$ True: $\ln (1 / 7)+\ln 7=\ln \left(\frac{7}{7}\right)=\ln 1=0$
d) $\ln (-e)=-1$ False: $\ln (-e)$ is undefined
7) $x \approx-0.305$
8) $x=\frac{\ln (5)}{\ln (4)-2 \ln (5)}$ (exact solution, which you could simplify to $\left.x=\frac{\ln (5)}{\ln (0.16)}\right)$

$$
x \approx-0.878
$$

9) a) $f(t)=100(\sqrt{15})^{t} \approx 100(3.873)^{t}$
b) 22500
c) about 5 months
10) Domain: $(3, \infty)$

Note: There is a vertical asymptote at $x=3$ but the graph goes so close so quickly that it is hard to draw the asymptote and keep it separate from the graph of the function!

Self-Test B

1) Domain: $\Re \backslash\{-2,1\}$

No x-intercept; y-intercept ($0,-\frac{5}{4}$)
Vertical asymptotes $x=-2$ and $x=1$
Horizontal asymptote $y=0$

Note: you should indicate the asymptotes with dotted lines. I was not able to do this in the image above
2) $(-3,0] \cup(3,4]$
3) $(0,2) \cup(3, \infty)$
4) $\frac{5}{4}$: rewrite it as $\ln \left(e^{\frac{5}{4}}\right)$ and use the "round-trip theorem" $\log _{b}\left(b^{x}\right)=x$
5) $\frac{x}{2}$ because of the "round-trip theorem" $b^{\log _{b}(x)}=x$
6) $\frac{3}{2} u-5 v$
7) a) $10(\log 5)=\log 50$ False: $10(\log 5)=\log 5^{10}$
b) $\log 100+3=\log 10^{5}$ True: $\log 100+3=2+3=5=\log 10^{5}$
c) $\log 1=\ln 1$ True: both equal 0
d) $\frac{\log 6}{\log 3}=\log 2$ False: $\frac{\log 6}{\log 3}$ cannot be simplified.
8) $x=-3$ or $x=6$
9) $x=\frac{1}{3}$
10) In about 33.8 years, or in other words, in the year 2045 (nearly 2046).

