Arithmetic and Geometric Series

1. A sequence $\left\{a_{n}\right\}$ is called an arithmetic sequence if any two consecutive terms have a common difference d. The arithmetic sequence is dertmined by d and the first value a_{1}. This can be written recursively as:

$$
a_{n}=a_{n-1}+d
$$

for $n \geq 2$. Alternatively, the formula for the nth term of the sequence is

$$
a_{n}=a_{1}+d(n-1) .
$$

2. Let $\left\{a_{n}\right\}$ be an arithmetic sequence, whose nth term is given by $a_{n}=a_{1}+d(n-1)$. Then, the sum $a_{1}+a_{2}+a_{3}+\ldots+a_{k}$ is given by adding $\left(a_{1}+a_{k}\right)$ precisely $\frac{k}{2}$ times:

$$
\sum_{i=1}^{k} a_{i}=\frac{k}{2} \cdot\left(a_{1}+a_{l}\right) .
$$

3. A sequence $\left\{a_{n}\right\}$ is called a geometric sequence if any two consecutive terms have a common ratio r. The geometric sequence is determined by r and the first value a_{1}. This can be written recursively as:

$$
a_{n}=a_{n-1} \cdot r^{n-1}
$$

for $n \geq 2$. Alternatively, we have the general formula for the nth term of the geometric sequence

$$
a_{n}=a_{1} \cdot r^{n-1} .
$$

4. Let $\left\{a_{n}\right\}$ be an geometric sequence, whose nth term is given by $a_{n}=a_{1} \cdot r^{n-1}$. Furthermore, assume that $r \neq 1$. Then, the sum $a_{1}+a_{2}+a_{3}+\ldots+a_{k}$ is given by:

$$
\sum_{i=1}^{k} a_{i}=a_{1} \cdot \frac{1-r^{k}}{1-r} .
$$

5. An infinite series is given by the

$$
\sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

6. Let $\left\{a_{n}\right\}$ be an geometric sequence, whose nth term is given by $a_{n}=a_{1} \cdot r^{n-1}$. Then the infinite geometric series is defined whenever $-1<r<1$. In this case, we have:

$$
\sum_{i=1}^{k} a_{i}=a_{1} \cdot \frac{1}{1-r}
$$

