Operations on Functions

MAT 1375 Spring 2012

1. If f and g are functions then their sum is the function $f+g$ defined by

$$
(f+g)(x)=f(x)+g(x)
$$

2. If f and g are functions then their difference is the function $f-g$ defined by

$$
(f-g)(x)=f(x)-g(x)
$$

3. If f and g are functions then their product is the function $f g$ defined by

$$
(f g)(x)=f(x) g(x)
$$

4. If f and g are functions then their quotient is the function f / g defined by

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
$$

5. The domain of the sum, difference and product functions is the set of all real numbers that are in both the domain of f and g.
6. The domain of the quotient function is the set of all real numbers that are in both the domain of f and g such that $g(x) \neq 0$.
7. Let f and g be functions. The composite function of f and g is defined as follows. For input x, the output is $g(f(x))$. This composite function is denoted $g \circ f$
8. The rule of the composite function is

$$
(g \circ f)(x)=g(f(x))
$$

9. The domain of the composite function $g \circ f$ is the set of all real numbers x such that x is in the domain of f and $f(x)$ is in the domain of g.
