1. For Algorithms (Section 3.1) see problems 1-4 in Assignment 2 (maximum, linear search, binary search, bubble sort, insertion sort).
2. Let $f:\{a, b, c, d\} \rightarrow\{a, b, c, d\}, f(a)=b, f(b)=a, f(c)=d, f(d)=b$.
a) Is f one to one? Justify your answer.
b) Is f onto? Justify your answer.
3. Let $f: \mathbf{Z} \rightarrow \mathbf{Z}, f(n)=4 n$. (Recall that \mathbf{Z} denotes the integers).
a) Is f one to one? Justify your answer.
b) Is f onto? Justify your answer.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=4 x$. (Recall that \mathbf{R} denotes the real numbers).
a) Is f one to one? Justify your answer.
b) Is f onto? Justify your answer.
5. Let $f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}, f(m, n)=m^{2}+n^{2}$.
a) Is f one to one? Justify your answer.
b) Is f onto? Justify your answer.
6. Compute the terms $a_{1}, a_{2}, a_{3}, a_{4}$, where $a_{n}=2^{n}+(-2)^{n}$.
7. Compute each of the following.
a) $\left\lceil-\frac{1}{3}\right\rceil$;
b) $\left\lfloor-\frac{1}{3}\right\rfloor$;
c) $\sum_{n=2}^{4}(-3)^{n}$;
d) $\sum_{i=0}^{2} \sum_{j=0}^{3}(2 i+3 j)$.
8. Determine whether each of these integers is congruent to 4 modulo 11. Justify your answer.
a) 59 ; b) 51 ; c) -59 , d) -51 ; e) 4 .
9. a) Evaluate $144 \bmod 7$.
b) Evaluate $(-94 \bmod 5) \bmod 3$.
10. Let n be an integer. Show that if n is a multiple of 3 , then $n^{3}+45$ is a multiple of 9 .
