1. Find the bitwise OR and bitwise AND of the bit strings 1010011101 and 011000 1011.
2. Use a truth table to determine if $(p \rightarrow r) \wedge(q \rightarrow r)$ and $(p \vee q) \rightarrow r$ are logically equivalent. Justify your answer.
3. Determine the truth value of each of the following statements. Give reasons for your answer. Assume that x and y are integers.
a) $\exists x \exists y(x-2 y=4 \wedge 2 x+4 y=12)$.
b) $\exists x(x=-x)$.
c) $\exists x \forall y\left(x<y^{2}\right)$.
d) $\exists x(|x|=-5)$.
4. Use a membership table to prove or disprove: if A and B are sets then $A \cup B=$ $(A-B) \cup(B-A)$. Justify your answer.
5. Prove that the difference of two rational numbers is a rational number.
6. Prove that if n is an integer and $3 n+2$ is even, then n is even.
7. Determine whether each of these arguments is valid.
a) If n is a real number with $n>2$, then $n^{2}>4$. Suppose that $n^{2} \leq 4$. Then $n \leq 2$.
b) If n is a real number with $n>2$, then $n^{2}>4$. Suppose that $n \leq 2$. Then $n^{2} \leq 4$.
8. Let $U=\{1,2,3 \ldots, 15\}, A=\{2,4,6,8,10\}$, and $B=\{4,5,7,8,13,15\}$. Determine the following sets.
a) $A \cup B$
b) $A \cap B$
c) $A-B$
d) $B-A$
e) \bar{A}
f) Express A with a bit string.
9. Draw a Venn diagram for $\bar{A} \cap \bar{B}$.
