13.4 Nonlinear Systems

In this final section, we want to learn how to solve systems of equations that are not necessarily all linear. We call these non-linear systems of equations.

Definition: Non-linear system of equations

A system of equations where one or more equations involved is not a line.

We primarily use the substitution method to solve a non-linear system. However, sometimes elimination will work as well.

Also, just as before, the solution to a non-linear system is all the points of intersection of the graphs of the equations. Therefore, since we now have more that just lines, we can have a variety of numbers of solutions. The graph can intersect once, twice, several times or not at all. Therefore, we should always verify the solution(s) to a system by looking at the graph.

Example 1:

Solve the system.

a.
$$x^2 + y^2 = 100$$

 $y - x = 2$

b.
$$x^2 + y^2 = 25$$

 $y^2 = x + 5$

$$x^2 + 2y^2 = 12$$

$$xy = 4$$

Solution:

a. We will solve this system by substitution. So we start by solving the bottom equation for y and then substitute it into the top equation. We get

$$y-x = 2 \Rightarrow y = x+2$$

$$x^{2} + y^{2} = 100 \Rightarrow x^{2} + (x+2)^{2} = 100$$

$$x^{2} + x^{2} + 4x + 4 = 100$$

$$2x^{2} + 4x - 96 = 0$$

$$2(x^{2} + 2x - 48) = 0$$

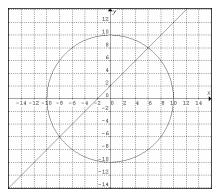
$$2(x+8)(x-6) = 0$$

$$x = -8, 6$$

So we have two different x values. This means we should have two points of intersection. Lets now find the y values and verify with a graph.

$$y = x + 2$$
 $y = x + 2$ $y = 6 + 2$ $y = -6$ $y = 8$

So our solutions are (-8, -6) and (6, 8). We clearly have a circle and a line, thus we can easily graph them together and get



b. Again we will use substitution to solve. This time notice that the bottom equation is already solved for y^2 and we have a y^2 in the top equation. Thus, that is the substitution we will make. We get

ve get
$$x^{2} + y^{2} = 25$$
 $\Rightarrow x^{2} + (x+5) = 25$
 $y^{2} = x+5$

Now we solve for x and then solve for y.

$$x^{2} + (x+5) = 25$$

$$x^{2} + x - 20 = 0$$

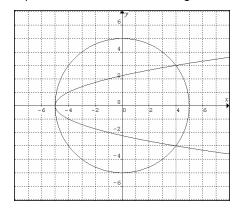
$$(x+5)(x-4) = 0$$

$$x = -5, 4$$

We substitute these back in to get y. We get

$$y^{2} = -5 + 5$$
 $y^{2} = 4 + 5$
 $y^{2} = 0$ $y^{2} = 9$
 $y = 0$ $y = \pm 3$

So we have three different solutions (-5, 0), (4, 3) and (4, -3). Lets verify with a graph. We have here a parabola and a circle. We get



c. Again, we will use substitution to solve. We need to decide which variable to solve for first. It seems that x or y on the bottom equation would be easiest. So we will solve for x. We get

$$xy = 4 \Rightarrow x = \frac{4}{y}$$

Now we substitute that into the first equation and solve. We have

$$x^{2} + 2y^{2} = 12 \Rightarrow \left(\frac{4}{y}\right)^{2} + 2y^{2} = 12$$
$$\frac{16}{y^{2}} + 2y^{2} = 12$$

We will have to clear the fractions and solve as we did in chapter 10, that is, using a substitution.

$$y^{2} \left(\frac{16}{y^{2}} + 2y^{2}\right) = y^{2} (12)$$

$$16 + 2y^{4} = 12y^{2}$$

$$2y^{4} - 12y^{2} + 16 = 0$$

$$2u^{2} - 12u + 16 = 0$$

$$2(u^{2} - 6u + 8) = 0$$

$$2(u - 4)(u - 2) = 0$$

$$u = 4, 2$$

$$y^{2} = 4$$

$$y^{2} = 4$$

$$y = \pm 2$$

$$y = \pm \sqrt{2}$$
Re-substitute $u = y^{2}$

So since we have four different y values we will have to find x for each one. We substitute these in to $x = \frac{4}{v}$ to get

$$x = \frac{4}{2}$$

$$= 2$$

$$x = \frac{4}{-2}$$

$$= -2$$

$$x = \frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{4\sqrt{2}}{2}$$

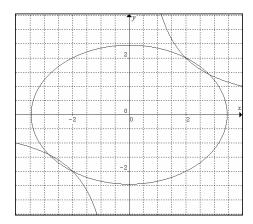
$$= \frac{4\sqrt{2}}{2}$$

$$= 2\sqrt{2}$$

$$= -2\sqrt{2}$$

$$= -2\sqrt{2}$$

So we have four solutions, (2, 2), (-2, -2), $(2\sqrt{2}, \sqrt{2})$ and $(-2\sqrt{2}, -\sqrt{2})$. Lets verify with a graph. We have an ellipse and a basic function ($xy = 4 \Rightarrow y = \frac{4}{x}$). So we have



Example 2:

Solve the system.

a.
$$y = 3^{x}$$

 $y = 3^{2x} - 2$
b. $y = \log_{2}(x+1)$
 $y = 5 - \log_{2}(x-3)$

Solution:

a. This time solving is a little more complicated. There are a variety of direction we could go, however, we are going to start by noticing $3^{2x} = (3^x)^2$. So our system really is

$$y = 3^{x}$$
$$y = (3^{x})^{2} - 2$$

We can see clearly we will substitute the top equation into the bottom. That is, put y in for 3^x . We get

$$y = (y)^{2} - 2$$

$$y = y^{2} - 2$$

$$y^{2} - y - 2 = 0$$

$$(y - 2)(y + 1) = 0$$

$$y = 2, -1$$

Now we substitute these values back in to get

$$2 = 3^x$$

$$x = \log_3 2$$

$$-1 = 3^x$$

However, the second equation is impossible (recall, exponential functions are always positive). Thus, that solution must be omitted. So we have a solution of $(\log_2 3, 2)$.

b. Lastly, since these equations are both already solved for y, we can simply set them equal to one another. Then we are left with a logarithmic equation to solve. We get

$$\log_{2}(x+1) = 5 - \log_{2}(x-3)$$

$$\log_{2}(x+1) + \log_{2}(x-3) = 5$$

$$\log_{2}(x+1)(x-3) = 5$$

$$(x+1)(x-3) = 2^{5}$$

$$x^{2} - 2x - 3 = 32$$

$$x^{2} - 2x - 35 = 0$$

$$(x-7)(x+5) = 0$$

$$x = 7, -5$$

However, -5 cannot be a solution since is doesn't even check in the equation. Thus we only have x = 7. Now we substitute this back into either original equation to get the y value. We choose the first equation.

$$y = \log_2(7+1)$$
$$= \log_2 8$$
$$= 3$$

So the solution is (7, 3).

13.4 Exercises

Solve the systems.

1.
$$x^2 + y^2 = 2$$
$$x + y = 2$$

2.
$$x^2 + y^2 = 25$$
$$y - x = 1$$

3.
$$25x^2 + 9y^2 = 225$$
$$5x + 3y = 15$$

4.
$$9x^2 + 4y^2 = 36$$
$$3x + 2y = 6$$

5.
$$y^2 = x + 3 \\ 2y = x + 4$$

$$6. \quad y = x^2$$
$$3x = y + 2$$

7.
$$x^2 - y^2 = 16$$
$$x - 2y = 1$$

8.
$$x^2 + 4y^2 = 25$$
$$x + 2y = 7$$

9.
$$x^2 + y^2 = 18$$
$$2x + y = 3$$

10.
$$x^{2} - y = 3$$
$$2x - y = 3$$

11.
$$x^2 + y^2 = 20$$
$$y = x^2$$

12.
$$x^{2} - y^{2} = 3$$
$$y = x^{2} - 3$$

13.
$$x^2 - x - y = 2$$
$$4x - 3y = 0$$

14.
$$x^2 - 2x + 2y^2 = 8$$
$$2x + y = 6$$

15.
$$x^2 + y^2 = 13$$
$$y = x^2 - 1$$

16.
$$x^2 - y = 5$$
$$x^2 + y^2 = 25$$

17.
$$x^2 + y^2 = 25$$
$$2x^2 - 3y^2 = 5$$

18.
$$x^2 + y^2 = 4$$
$$9x^2 + 16y^2 = 144$$

19.
$$x^2 + y^2 = 13$$
$$x^2 - y^2 = -16$$

20.
$$x^2 + y^2 = 16$$
$$y^2 - 2y^2 = 10$$

21.
$$x^{2} + y^{2} = 20$$
$$x^{2} - y^{2} = -12$$

22.
$$x^{2} + y^{2} = 14$$
$$x^{2} - y^{2} = 4$$

23.
$$xy = -\frac{9}{5}$$
$$3x + 2y = 6$$

24.
$$x + y = -6$$

 $xy = -7$

25.
$$y = x^2 - 4$$
$$x^2 - y^2 = -16$$

26.
$$x^{2} + y^{2} = 25$$
$$y^{2} = x + 5$$

$$27. \quad xy = \frac{1}{6}$$
$$y + x = 5xy$$

$$28. \quad xy = \frac{1}{12}$$
$$x + y = 7xy$$

29.
$$x^{2} + xy + 2y^{2} = 7$$
$$x - 2y = 5$$

30.
$$x^2 - xy + 3y^2 = 27$$
$$x - y = 2$$

31.
$$x^2 + y^2 = 5$$
$$xy = 2$$

32.
$$x^2 + y^2 = 20$$
$$xy = 8$$

33.
$$3xy + x^2 = 34$$
$$2xy - 3x^2 = 8$$

34.
$$2xy + 3y^2 = 7$$
$$3xy - 2y^2 = 4$$

35.
$$\frac{\frac{1}{x} + \frac{1}{y} = 5}{\frac{1}{x} - \frac{1}{y} = -3}$$

36.
$$\frac{\frac{1}{x} - \frac{1}{y} = 4}{\frac{1}{x} + \frac{1}{y} = -2}$$

37.
$$\frac{\frac{2}{x^2} + \frac{5}{y^2} = 3}{\frac{3}{x^2} - \frac{2}{y^2} = 1}$$

38.
$$\frac{\frac{1}{x^2} - \frac{3}{y^2} = 14}{\frac{2}{x^2} + \frac{1}{y^2} = 35}$$

39.
$$x^4 = y - 1$$
$$y - 3x^2 + 1 = 0$$

40.
$$x^3 - y = 0 \\ xy - 16 = 0$$

41.
$$y = -\sqrt{x}$$

 $(x-3)^2 + y^2 = 4$

42.
$$y = \sqrt{x}$$
$$(x+2)^2 + y^2 = 1$$

43.
$$y = 2^x$$

 $y = 2^{2x} - 12$

44.
$$y = 5^x$$

 $y = 5^{2x} - 1$

45.
$$y = e^{4x}$$

 $y = e^{2x} + 6$

46.
$$y = 2e^{2x}$$

 $y = e^{x} - 1$

47.
$$y = \log_2(x+4)$$

 $y = 2 - \log_2(x+1)$

48.
$$y = \log_6 x$$
$$y = -\log_6 (x+1)$$

49.
$$y = \log_9(x+1)$$

 $y = \log_9 x + \frac{1}{2}$

50.
$$y = \log_{16}(x+3)$$
$$y = \log_{16}(x-1) + \frac{1}{2}$$